2023, Issue 10, Volume 15

REVOLUTIONIZING FRUIT PRESERVATION: 1-MCP’S DIVERSE APPLICATIONS AND INNOVATIONS

Murugesan Ranjani1* Senthilkumar Shricharan2 Somasekar Nandhini3 and

Palanichamy Meichander4

1Division of Food Science & Post Harvest Technology, ICAR – Indian Agricultural Research Institute, New Delhi – 110012

2Division of Plant Physiology, ICAR – Indian Agricultural Research Institute, New Delhi – 110012

3Department of Postharvest Management, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam, Tamil Nadu – 625604

5Department of Fruit Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu – 641003

Email: ranjani99mr@gmail.com

Received-03.10.2023, Revised-14.10.2023, Accepted-26.10.2023

Abstract: 1-Methylcyclopropene (1-MCP) is a revolutionary post-harvest technique with physiological and economic benefits. Current research focuses on fine-tuning delivery techniques to manage fruit and vegetable ripening and senescence, customising formulations for individual products and ensuring correct doses and exposure durations. Delivery systems that optimise 1-MCP dispersion in storage are also being explored to improve its efficacy. Mechanistic investigations of 1-MCP’s effects on ethylene receptors and signalling cascades have highlighted its potency. Commercial 1-MCP formulations may sustainably minimise post-harvest losses. They reduce waste and extend perishable shelf life, making producers and distributors more flexible to demand and supply chain changes. This technology could revolutionise industry quality standards, delivering fresh produce and enhancing brand reputation and consumer pleasure. Beyond commerce, 1-MCP formulations affect global food security and sustainability. Scientifically proven and commercially viable compositions prevent post-harvest losses, strengthening and improving agriculture. This report provides a comprehensive evaluation of existing and prospective research to elucidate the effects of 1-MCP on fruit preservation.

Keywords: 1-MCP, Postharvest losses, Fruit preservation, Softening, Pathogen resistance

References

Agarwal, G., Choudhary, D., Singh, V. P. and Arora, A. (2012). Role of ethylene receptors during senescence and ripening in horticultural crops. Plant Signaling and Behavior7(7), 827–846. https://doi.org/10.4161/psb.20321

Google Scholar

Aguilar-Ayala, I. and Herrera-Rojas, D. (2023). Application of phytohormones, growth regulators, and calcium to preserve fruit quality in pre-and postharvest.

Google Scholar

APEDA (2023). Statics of horticulture production and export. Apeda.http://gov.in/apedawebsite/#

Binder, B.M. (2020). Ethylene signalling in plants. Journal of BiologicalChemistry295(22), 7710–7725. https://doi.org/10.1074/jbc.REV120.010854

Google Scholar

Chang, L. Y. and Brecht, J. K. (2020, August). Delaying ripening using 1-MC Preveals chilling injury symptom development at the putative chilling threshold temperature for mature green bananas. In ASHS Annual Conference. ASHS 2020.

Google Scholar

Chang, L.-Y. and Brecht, J. K. (2023). Responsesof1-methylcyclopropene(1-MCP)-treatedbananafruittopre- and post-treatmentethyleneexposure, ScientiaHorticulturae, 309. Scientia Horticulturae, 309, 111636. https://doi.org/10.1016/j.scienta.2022.111636

Google Scholar

Chauhan, C. (2013). India wastes more farm food than China: UN. Hindustan Times, 12.

Google Scholar

Choi, H. R., Jeong, M. J., Baek, M. W., Choi, J. H., Lee, H. C., Jeong, C. S. and Tilahun, S. (2021). Transcriptome analysis of prestorage1-MCP and highCO2-treated “madoka” peach fruit explains the reduction in chilling injury and improvement of storage period by delaying ripening. InternationalJournal of MolecularSciences,22(9), 3–5. https://doi.org/10.3390/ijms22094437

Google Scholar

Cocetta, G. and Natalini, A. (2022). Ethylene: Management and breeding for postharvest quality in vegetable crops. A review. Frontiers in Plant Science13, 968315. https://doi.org/10.3389/fpls.2022.968315

Google Scholar

de Bruijn, J., Gómez, A., Loyola, C., Melín, P., Solar, V., Abreu, N., Azzolina-Jury, F. and Valdés, H. (2020). Use of a copper-and zinc-modified natural zeolite to improve ethylene removal and postharvest quality of tomato fruit. Crystals10(6), 471.

https://doi.org/10.3390/cryst10060471

Google Scholar

Dou, J.-F., Kou, X.-H., Wu, C.-E., Fan, G.-J., Li, T.-T., Li, X.-J., Zhou, D.-D., Yan, Z.-C. and Zhu, J.-P. (2023). Recent advances and development of postharvest management research for fresh jujube fruit: A review. Scientia Horticulturae310, 111769. https://doi.org/10.1016/j.scienta.2022.111769

Google Scholar

Du, M., Jia, X., Li, J., Li, X., Jiang, J., Li, H., Zheng, Y., Liu, Z., Zhang, X. and Fan, J. (2020). Regulation effects of 1-MCP combined with flow microcirculation of sterilizing medium on peach shelf quality. Scientia Horticulturae260, 108867. https://doi.org/10.1016/j.scienta.2019.108867

Google Scholar

Egea, I., Flores, F.B., Martínez-Madrid, M.C., Romojaro, F. and Sánchez-Bel, P. (2010). 1-Methylcyclopropene affects the antioxidant system of apricots (Prunus armeniaca L. cv. Búlida) during storage at low temperature. Journal of the Science of Food and Agriculture90(4), 549–555. https://doi.org/10.1002/jsfa.3842

Google Scholar

Falagán, N. and Terry, L. A. (2020). 1-methylcyclopropene maintains postharvest quality in Norwegian apple fruit. Food Science and Technology International26(5),420–429. https://doi.org/10.1177/1082013219896181

Google Scholar

Fu, Y., Chen, M., Liu, K. and Chen, J. (2007). Effects of the second treatment with 1-MCP on postharvest physiological and bio-chemical characteristics of kiwifruit. Journal of Fruit Science1, 43–48.

Google Scholar

Gamrasni, D., Gadban, H., Tsvilling, A., Goldberg, T., Neria, O., Ben-Arie, R., Wolff, T. and Stern, Y. J. (2015). 1–MCP improves the quality of stored “Wonderful” pomegranates. Acta Horticulturae1079 (1079), 229–234. https://doi.org/10.17660/ActaHortic.2015.1079.26

Google Scholar

Gill, K., Kumar, P., Negi, S., Sharma, R., Joshi, A. K., Suprun, I. I. and Al-Nakib, E. A. (2023) Physiological perspective of plant growth regulators in flowering, fruit setting and ripening process in citrus. Scientia Horticulturae309, 111628. https://doi.org/10.1016/j.scienta.2022.111628

Google Scholar

Gwanpua, S. G., Verlinden, B. E., Hertog, M. L., Nicolai, B. M. and Geeraerd, A. H. (2017). A mechanistic modelling approach to understand 1-MCP inhibition of ethylene action and quality changes during ripening of apples. Journal of the Science of Food and Agriculture97(11), 3802–3813. https://doi.org/10.1002/jsfa.8244

Google Scholar

Hegazy, R. (2013). Postharvest situation and losses in India. High Court of Karnataka-Bengaluru Bench24739, 2012.

Google Scholar

Hofman, P.J., Jobin-Décor, M., Meiburg, G.F., Macnish, A.J. and Joyce, D.C. (2001). Ripening and quality responses of avocado, custard apple, mango and papaya fruit to 1-methylcyclopropene. AustralianJournal of ExperimentalAgriculture41(4), 567–572. https://doi.org/10.1071/EA00152

Google Scholar

Inaba, A., Liu, X., Yokotani, N., Yamane, M., Lu, W. J., Nakano, R. and Kubo, Y. (2007). Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit. Journal of Experimental Botany58(5), 1047–1057. https://doi.org/10.1093/jxb/erl265

Google Scholar

Itai, A., Igori, T., Fujita, N., Egusa, M., Kodama, M. and Murayama, H. (2012). Ethylene Analoge and 1-Methylcyclopropene Enhance Black Spot Disease Development in Pyrus pyrifolia Nakai. Hort. Science47(2),228–231. https://doi.org/10.21273/HORTSCI.47.2.228

Google Scholar

Janisiewicz, W.J., Leverentz, B., Conway, W.S., Saftner, R.A., Reed, A. N. and Camp, M.J. (2003). Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on treated fruit stored under controlled atmosphere conditions. Postharvest Biology and Technology29(2),129–143. https://doi.org/10.1016/S0925-5214(03)00040-1

Google Scholar

Jiang, N. and Rao, J. (2010). Fu, R. PG enzyme activity and the expression of the gene DkPG1 in the recovered softening of persimmon fruit. HorticultureJournal9, 1507–1512.

Jiang, Y., Joyce, D.C. and Terry, L.A. (2001). 1-Methylcyclopropene treatment affects strawberry fruit decay. Postharvest Biology and Technology23(3),227–232. https://doi.org/10.1016/S0925-5214(01)00123-5

Google Scholar

Jin, P., Fu, J., Du, W., Li, H. and Cui, G. (2022). Effects of 1-MCP on storage quality and enzyme activity of petals of edible rose cultivar ‘Dianhong’at low temperatures. Horticulturae8(10), 954. https://doi.org/10.3390/horticulturae8100954

Google Scholar

Kumar, D. and Kalita, P. (2017). Reducing postharvestlosses during storage of graincrops to strengthen food security in developing countries. Foods6(1),8. https://doi.org/10.3390/foods6010008

Google Scholar

Kumar, H., Gupta, N., Bandral, J. D., Sood, M., Bhat, A., Reshi, M. and Singh, J. (2023). Role of 1-MCP on postharvest quality of fruits and vegetables.

Li, J., Lei, H., Song, H., Lai, T., Xu, X. and Shi, X. (2017). 1-methylcyclopropene (1-MCP) suppressed postharvest blue mold of apple fruit by inhibiting the growth of Penicillium expansumPostharvest Biology and Technology125,59–64. https://doi.org/10.1016/j.postharvbio.2016.11.005

Google Scholar

Li, L., Li, C., Sun, J., Sheng, J., Zhou, Z., Xin, M., Yi, P., He, X., Zheng, F., Tang, Y., Li, J. and Tang, J. (2020). The effects of 1-methylcyclopropene in the regulation of antioxidative system and softening of mango fruit during storage. Journal of Food Quality, 2020, articleID6090354. https://doi.org/10.1155/2020/6090354

Google Scholar

Li, L., Shuai, L., Sun, J., Li, C., Yi, P., Zhou, Z., He, X., Ling, D., Sheng, J., Kong, K. W., Zheng, F., Li, J., Liu, G., Xin, M., Li, Z. and Tang, Y. (2020). The Role of 1-Methylcyclopropene in the regulation of ethylene biosynthesis and ethylene receptor gene expressionin Mangifera indica L. (Mango Fruit). Food Science and Nutrition8(2), 1284–1294. https://doi.org/10.1002/fsn3.1417

Google Scholar

Li, R., Ma, J., Gu, H., Jia, W., Shao, Y. and Li, W. (2022). 1-methylcyclopropene counteracts ethylene promotion of fruit softening and roles of MiERF2/8 and MiPG in postharvest mangoes. Frontiers in Plant Science13, 971050. https://doi.org/10.3389/fpls.2022.971050

Google Scholar

Lin, Y., Sun, J., Chen, Y., Lin, Y., Jiang, X. and Lin, H. (2016). Inhibition of postharvest disease and induction of defence-related enzymes by paper containing 1-methlcyclopropene(1-MCP) in Averrhoa carambola fruit. ChineseJournal of Tropical Crops37, 1172–1176.

Google Scholar

Liu, H., Jiang, W., Zhou, L., Wang, B. and Luo, Y. (2005). The effects of 1-methylcyclopropene on peach fruit (Prunus persica L. cv. Jiubao) ripening and disease resistance. InternationalJournal of Food Science and Technology40(1),1–7. https://doi.org/10.1111/j.1365-2621.2004.00905.x

Google Scholar

Liu, R., Ji, N., Zhang, N., Wang, R., Li, Y., Lei, J. and Zhou, R. (2023). Postharvest quality exploration of “crystal” grapes in karst mountainous area: Regulatory effect of high concentration 1-MCP fumigation. Agronomy13(10),2450. https://doi.org/10.3390/agronomy13102450

Google Scholar

Lohani, S., Trivedi, P.K. and Nath, P. (2004). Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA, and IAA. Postharvest Biology and Technology31(2),119–126. https://doi.org/10.1016/j.postharvbio.2003.08.001

Google Scholar

Mansoor, S., Ali Wani, O.A., Lone, J.K., Manhas, S., Kour, N., Alam, P., Ahmad, A. and Ahmad, P. (2022). Reactive oxygen species in plants: From source to sink. Antioxidants11(2), 225. https://doi.org/10.3390/antiox11020225

Google Scholar

Mata, C. I., Fabre, B., Parsons, H. T., Hertog, M. L. A. T. M., Van Raemdonck, G., Baggerman, G., Van de Poel, B., Lilley, K. S. and Nicolaï, B. M. (2018). Ethylene receptors, CTRs and EIN2 target protein identification and quantification through parallel reaction monitoring during tomato fruit ripening. Frontiers in Plant Science9, 1626. https://doi.org/10.3389/fpls.2018.01626

Google Scholar

Mata, C. I., Magpantay, J., Hertog, M. L., Van de Poel, B. and Nicolaï, B. M. (2021). Expression and protein levels of ethylene receptors, CTRs and EIN2 during tomato fruit ripening as affected by 1-MCP. Postharvest Biology and Technology179, 111573. https://doi.org/10.1016/j.postharvbio.2021.111573

Google Scholar

Meng, X., Fang, J., Fu, M., Jiao, W., Ren, P. and Yang, X. (2023). The Role of 1-methylcyclopropylene (1-MCP) and salicylic acid (SA) in Induced Resistance of Postharvest Fruits. Horticulturae9(1), 108. https://doi.org/10.3390/horticulturae9010108

Google Scholar

Mottaleb, K. A., Kruseman, G., Frija, A., Sonder, K. and Lopez-Ridaura, S. (2022). Projecting wheat demand in China and India for 2030 and 2050: Implications for food security. Frontiers in Nutrition9,1077443. https://doi.org/10.3389/fnut.2022.1077443

Google Scholar

Olivares, D., Alvarez, E., Véliz, D., García-Rojas, M., Díaz, C. and Defilippi, B. G. (2020). Effects of 1-Methylcyclopropene and Controlled Atmosphere on ethylene Synthesis and Quality Attributes of Avocado cvs. Edranol and Fuerte. Journal of Food Quality, 2020, article ID5075218. https://doi.org/10.1155/2020/5075218

Google Scholar

Osuna-García, Jorge and Nolasco-González, Yolanda and Perez. (2017). Aqueous 1-methylcyclopropene (1-Mcp) to delay ripening of Keitt mango fruit with quarantine hot water treatment. Revista Fitotecnia Mexicana. MariaandGómez Jaimes,RafaelandUrías-López, Mario, 40, 199–210.

Google Scholar

Parfitt, J., Barthel, M. and Macnaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences365(1554),3065–3081. https://doi.org/10.1098/rstb.2010.0126

Google Scholar

Park, H. L., Seo, D. H., Lee, H. Y., Bakshi, A., Park, C., Chien, Y. C., Kieber, J. J., Binder, B. M. and Yoon, G. M. (2023). Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nature Communications14(1),365. https://doi.org/10.1038/s41467-023-35975-6

Google Scholar

Saftner, R.A., Abbott, J.A., Conway, W.S. and Barden, C.L. (2003). Effects of 1-methylcyclopropene and heattreatments on ripening and post harvest decay in “goldendelicious”apples. Journal of the American Society for HorticulturalScience128(1), 120–127. https://doi.org/10.21273/JASHS.128.1.0120

Google Scholar

Sharma, S., Sharma, R.R., Pal, R.K., Paul, V. and Dahuja, A. (2012). 1-Methylcyclopropene influences biochemical attributes and fruit softening enzymes of “Santa Rosa” Japanese plum (Prunus salicina Lindl.). Journal of Plant Biochemistry and Biotechnology21(2),295–299. https://doi.org/10.1007/s13562-011-0098-6

Google Scholar

Shi, L., Shen, L., Yu, M., Ouyang, L., Fan, B. and Sheng, J. (2008). Effects of 1-methylcyclopropene treatment on the shelf-life quality of strawberry cv. Jingnong 1st. Acta Horticulturae768, 311–315.

Shu, C., Wall, M. M., Follett, P. A., Sugimoto, N., Bai, J. and Sun, X. (2023). Effect of humidity-triggered controlled-release 1-methylcyclopropene (1-MCP) on postharvest quality of papaya fruit. Horticulturae9(10), 1062. https://doi.org/10.3390/horticulturae9101062

Google Scholar

Singh, A., Vaidya, G., Jagota, V., Darko, D. A., Agarwal, R. K., Debnath, S. and Potrich, E. (2022). Recent advancement in postharvest loss mitigation and quality management of fruits and vegetables using machine learning frameworks. Journal of Food Quality2022, 1–9. https://doi.org/10.1155/2022/6447282

Google Scholar

Sun, X., Wang, W., Li, Z., Wang, Z. and Zhang, Z. (2001). Effects of 1-MCP on cold storage of dangshangsuii pears. Storage and Process6, 14–17.

Google Scholar

Testempasis, S., Tanou, G., Minas, I., Samiotaki, M., Molassiotis, A. and Karaoglanidis, G. (2021). Unraveling interactions of the necrotrophic fungal species Botrytis cinerea with 1-methylcyclopropene or ozone-treated apple fruit using proteomic analysis. Front. Recent dev. Frontiers in Plant Science12,644255. https://doi.org/10.3389/fpls.2021.644255

Google Scholar

Tomala, K., Małachowska, M., Guzek, D., Głąbska, D. and Gutkowska, K. (2020). The effects of 1-methylcyclopropene treatment on the fruit quality of “Idared” apples during storage and transportation. Agriculture10(11), 490. https://doi.org/10.3390/agriculture10110490

Google Scholar

Wan, R., Song, J., Lv, Z., Qi, X., Han, X., Guo, Q., Wang, S., Shi, J., Jian, Z., Hu, Q. and Chen, Y. (2022). Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation. Genes13(5), 895. https://doi.org/10.3390/genes13050895

Google Scholar

Wang, Z., Wang, W., Dong, W., Ding, D., Jia, X. and Zhang, Z. (2007). Research of 1-MCP treatment effects on fresh-keeping of “Lubaoshi” pear. Storage and Process6, 9–12.

Wang, Z., Yuan, G., Pu, H., Shan, S., Zhang, Z., Song, H. and Xu, X. (2021). 1-Methylcyclopropene suppressed the growth of Penicillium digitatum and inhibited the green mould in citrus fruit. Journal of Phytopathology169(2), 83–90. https://doi.org/10.1111/jph.12961

Google Scholar

Watkins, C. B. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389–409. https://doi.org/10.1016/j.biotechadv.2006.01.005

Google Scholar

Wei, H., Seidi, F., Zhang, T., Jin, Y. and Xiao, H. (2021). Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemistry337,127750. https://doi.org/10.1016/j.foodchem.2020.127750

Google Scholar

Wills, R. B. H. (2021). Potential for more sustainable energy usage in the postharvest handling of horticultural produce through management of ethylene. Climate9(10),147. https://doi.org/10.3390/cli9100147

Google Scholar

Win, N. M., Yoo, J., Naing, A. H., Kwon, J. G. and Kang, I. K. (2021). 1-Methylcyclopropene (1-MCP) treatment delays modification of cell wall pectin and fruit softening in “Hwangok” and “Picnic” apples during cold storage. Postharvest Biology and Technology180,111599. https://doi.org/10.1016/j.postharvbio.2021.111599

Google Scholar

Xia, Y., Zhuo, R., Li, B. and Tian, S. (2021). Effects of 1-methylcyclopropene on disease resistance of red-fleshed kiwifruit during long-term cold storage and the possible mechanisms. New Zealand Journal of Crop and Horticultural Science49(2–3), 182–195. https://doi.org/10.1080/01140671.2020.1856888

Google Scholar

Yan, X., Zhang, R., Liang, Q., Guo, X., Yao, G., Li, Y. and Zhang, Y. (2021). Effects of low temperature combined with 1-MCP on postharvest quality of Tunisia soft-seed pomegranate. Food and Fermentation Industries47, 147–155.

Google Scholar

Yang, X., Zhang, X., Fu, M., Chen, Q. and Muzammil, J. M. (2018). Chlorine dioxide fumigation generated by a solid releasing agent enhanced the efficiency of 1-MCP treatment on the storage quality of strawberry. Journal of Food Science and Technology55(6), 2003–2010. https://doi.org/10.1007/s13197-018-3114-1

Google Scholar

Zeng, L., Shi, L., Lin, H., Lin, Y., Lin, Y. and Wang, H. (2021). Paper-containing 1-methylcyclopropene treatment suppresses fruit decay of fresh Anxi persimmons by enhancing disease resistance. Food Quality and Safety5, fyab007. https://doi.org/10.1093/fqsafe/fyab007

Google Scholar

Zhang, J., Ma, Y., Dong, C., Terry, L. A., Watkins, C. B., Yu, Z. and Cheng, Z. M. (2020). Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Horticulture Research7(1), 208. https://doi.org/10.1038/s41438-020-00405-x

Google Scholar

Zhang, Y., Gao, C., Masum, M. M. I., Cheng, Y., Wei, C., Guan, Y. and Guan, J. (2021). Dynamic microbiome changes reveal the effect of 1-methylcyclopropene treatment on reducing post-harvest fruit decay in “doyenne Du comice” pear. Frontiers in Microbiology12, 729014. https://doi.org/10.3389/fmicb.2021.729014

Google Scholar

Zhang, Z., Tian, S., Zhu, Z., Xu, Y. and Qin, G. (2012). Effects of 1-methylcyclopropene(1-MCP) on ripening and resistance of jujube (Zizyphus jujuba cv. Huping) fruit against postharvest disease. LWTFood Science and Technology45(1), 13–19. https://doi.org/10.1016/j.lwt.2011.07.030

Google Scholar