Raghavendra Kumar Dwivedi1*, DivyaDwivedi2, SomeshShukla2, Ravikant3, Aditya Raj Gupta 4 andAnkurPachauri1
1 Department of Pharmacy/ Sakshi College of Pharmacy Baikunthpur Kanpur/ Dr. A.P.J. Abdul Kalam University Lucknow/ India
2 Department of Pharmacy/ Rama University, Mandhana, Kanpur/ India
3Department ofPharmacy/ KuwarAjeet College of Pharmacy, Jaunpur/ Dr. A.P.J. Abdul Kalam University Lucknow/ India
4Department of Pharmacy/Advance Institute of Bio-tech and Paramedical Sciences, Kanpur/ India
Received-25.03.2023, Revised-11.04.2023, Accepted-25.04.2023
Abstract: Vesicular systems are a revolutionary way of administering drugs in a controlled manner to increase bioavailability and prolong the therapeutic effect. Niosomes are hydrated vesicular structures that include a non-ionic surface active agent, cholesterol, and other lipids. Over the liposomes, niosomes have various advantages, such as delivering drugs to specified sites that are non-toxic, stable for a longer time in different situations, and need low production cost. The first cosmetic industry that produced niosomes was L’Oreal. Later on, in the pharmaceutical sector, its applications were explored. Niosomes are developed by self association of cholesterol and surface active agents in an aqueous phase.Niosomes have the property of biodegradable, biocompatible and nonimmunogenic structure and also show the ability for encapsulation of both types of drugs hydrophilic and lipophilic. Over the last few years, it is studied that niosomes may enhance the drug bioavailability, and provides a novel approach for delivering numerous drugs like- protein therapeutic agents, chemical therapeutic agents and gene substances with less toxicity and desired targeted ability. This review provides complete details on niosomes, structure, types, fabrication processes, factors influencing niosomes competence, benefits and drawbacks, implementations, and cites numerous instance of niosomes studies over the last decade.
Keywords: Niosomes, Non-ionic surfactant, Cholesterol, Non toxic, Liposomes, Vesicles
References
Abdelkader, H., Alani, A. W. andAlany, R. G. (2014). Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug delivery, 21(2), 87-100.
Azmin, M. N., Florence, A. T., Handjani‐Vila, R. M., Stuart, J. F. B., Vanlerberghe, G. and Whittaker, J. S. (1985). The effect of non‐ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. Journal of Pharmacy and Pharmacology, 37(4), 237-242.
Arunachalam,A., Jeganath, S., Yamini, K. andTharangini, K. (2012). Niosomes: a novel drug delivery system. International journal of novel trends in pharmaceutical sciences, 2(1), 25-31.
Agarwal, S., Mohamed, M. S., Raveendran, S., Rochani, A. K., Maekawa, T. and Kumar, D.S. (2018). Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC advances, 8(57), 32621-32636.
Arunothayanun, P., Bernard, M. S., Craig, D. Q. M., Uchegbu, I. F. and Florence, A. T. (2000). The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyldiglycerol ether. International journal of pharmaceutics, 201(1), 7-14.
Ag Seleci, D.,Seleci, M., Walter, J. G., Stahl, F. andScheper, T. (2016). Niosomes as nanoparticular drug carriers: fundamentals and recent applications. Journal of nanomaterials, 2016.
Aboul-Einien,M. H., Kandil, S. M., Abdou, E. M., Diab, H. M. andZaki, M. S. (2020). Ascorbic acid derivative-loaded modified aspasomes: formulation, in vitro, ex vivo and clinical evaluation for melasma treatment. Journal of liposome research, 30(1), 54-67.
Alemi, A., Reza, J. Z., Haghiralsadat, F., Jaliani, H. Z., Karamallah, M. H., Hosseini, S. A. andKaramallah, S. H. (2018). Paclitaxel and curcumincoadministration in novel cationic PEGylatedniosomal formulations exhibit enhanced synergistic antitumor efficacy. Journal of nanobiotechnology, 16(1), 1-20.
Ammar, H. O., Haider, M., Ibrahim, M. and El Hoffy, N. M. (2017). In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug delivery, 24(1), 414-421.
Abdelmonem, R., Elhabal, S. F., Abdelmalak, N. S., El-Nabarawi, M. A. andTeaima, M. H. (2021). Formulation and Characterization of Acetazolamide/CarvedilolNiosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. Pharmaceutics, 13(2), 221.
Akbarzadeh, I., Saremi Poor, A., Yaghmaei, S., Norouzian, D., Noorbazargan, H., Saffar, S. andBakhshandeh, H. (2020). Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Development and Industrial Pharmacy, 46(9), 1535-1549.
Alyami, H., Abdelaziz, K., Dahmash, E. Z. andIyire, A. (2020). Nonionic surfactant vesicles (niosomes) for ocular drug delivery: Development, evaluation and toxicological profiling. Journal of Drug Delivery Science and Technology, 60, 102069.
Akbarzadeh, I., Yaraki, M. T., Bourbour, M., Noorbazargan, H., Lajevardi, A., Shilsar, S. M. S. andMousavian, S. M. (2020). Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. Journal of Drug Delivery Science and Technology, 57, 101715.
Biswas, G. R. andMajee, S. B. (2017). Niosomes in ocular drug delivery. Eur. J. Pharm. Med. Res, 4, 813-819.
Balin, B. J., Broadwell, R. D., Salcman, M. and El‐Kalliny, M. (1986). Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. Journal of Comparative Neurology, 251(2), 260-280.
Broadwell, R. D. andBalin, B. J. (1985). Endocytic and exocytic pathways of the neuronal secretory process and trans synaptic transfer of wheat germ agglutinin‐horseradish peroxidase in vivo. Journal of Comparative Neurology, 242(4), 632-650.
Bhardwaj, P., Tripathi, P., Gupta, R. andPandey, S. (2020). Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology, 56, 101581.
Basiri, L., Rajabzadeh, G. andBostan, A. (2017). α-Tocopherol-loadedniosome prepared by heating method and its release behavior. Food chemistry, 221, 620-628.
Balakrishnan, P., Shanmugam, S., Lee, W. S., Lee, W. M., Kim, J. O., Oh, D. H. and Yong, C. S. (2009). Formulation and in vitro assessment of minoxidilniosomes for enhanced skin delivery. International journal of pharmaceutics, 377(1-2), 1-8.
Bayindir, Z. S. andYuksel, N. (2010). Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of pharmaceutical sciences, 99(4), 2049-2060.
Baillie, A. J., Florence, A. T., Hume, L. R., Muirhead, G. T. andRogerson, A. (1985). The preparation and properties of niosomes—non‐ionic surfactant vesicles. Journal of pharmacy and pharmacology, 37(12), 863-868.
Bini, K. B., Akhilesh, D., Prabhakara, P. andKamath, J. V. (2012). Development and characterization of non-ionic surfactant vesicles (niosomes) for oral delivery of lornoxicam. International Journal of Drug Development and Research, 4(3), 147-154.
Bendas, E. R., Abdullah, H., El-Komy, M. H. andKassem, M. A. (2013). Hydroxychloroquineniosomes: a new trend in topical management of oral lichen planus. International journal of pharmaceutics, 458(2), 287-295.
Bansal, S., Aggarwal, G., Chandel, P. and Harikumar, S. L. (2013). Design and development of cefdinirniosomes for oral delivery. Journal of pharmacy &bioallied sciences, 5(4), 318.
Chow, H. H. S., Anavy, N. and Villalobos, A. (2001). Direct nose–brain transport of benzoylecgonine following intranasal administration in rats. Journal of pharmaceutical sciences, 90(11), 1729-1735.
Colombo, G., Lorenzini, L., Zironi, E., Galligioni, V., Sonvico, F., Balducci, A. G. andScagliarini, A. (2011). Brain distribution of ribavirin after intranasal administration. Antiviral research, 92(3), 408-414.
Chen, X. Q., Fawcett, J. R., Rahman, Y. E., Ala, T. A. and Frey II, W. H. (1998). Delivery of nerve growth factor to the brain via the olfactory pathway. Journal of Alzheimer’s Disease, 1(1), 35-44.
Chen, S., Hanning, S., Falconer, J., Locke, M. and Wen, J. (2019). Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics, 144, 18-39.
De, S., Kundu, R. and Biswas, A. (2012). Synthesis of gold nanoparticles in niosomes. Journal of colloid and interface science, 386(1), 9-15.
Devaraj, G. N., Parakh, S. R., Devraj, R., Apte, S. S., Rao, B. R. and Rambhau, D. (2002). Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. Journal of colloid and interface science, 251(2), 360-365.
De, A., Venkatesh, N., Senthil, M., Sanapalli, B. K. R., Shanmugham, R. and Karri, V. V. S. R. (2018). Smart niosomes of temozolomide for enhancement of brain targeting. Nano biomedicine, 5, 1849543518805355.
Escudero, I., Geanta, R. M., Ruiz, M. O. and Benito, J. M. (2014). Formulation and characterization of Tween 80/cholestherolniosomes modified with tri-n-octylmethylammonium chloride (TOMAC) for carboxylic acids entrapment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461, 167-177.
Frey, W. H., Liu, J., Chen, X., Thorne, R. G., Fawcett, J. R., Ala, T. A. and Rahman, Y. E. (1997). Delivery of 125I-NGF to the brain via the olfactory route. Drug Delivery, 4(2), 87-92.
Gharbavi, M., Amani, J., Kheiri-Manjili, H., Danafar, H. and Sharafi, A. (2018). Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Advances in pharmacological sciences, 2018.
Gutiérrez, G., Matos, M., Barrero, P., Pando, D., Iglesias, O. and Pazos, C. (2016). Iron-entrapped niosomes and their potential application for yogurt fortification. LWT, 74, 550-556.
Girigoswami, A., Das, S. and De, S. (2006). Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 64(4), 859-866.
Gaafar, P. M., Abdallah, O. Y., Farid, R. M. and Abdelkader, H. (2014). Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. Journal of liposome research, 24(3), 204-215.
Illum, L. (2000). Transport of drugs from the nasal cavity to the central nervous system. European journal of pharmaceutical sciences, 11(1), 1-18.
Illum, L. (2003). Nasal drug delivery—possibilities, problems and solutions. Journal of controlled release, 87(1-3), 187-198.
Isnan, A. P. and Jufri, M. (2017). Formulation of niosomal gel containing green tea extract (camellia sinensis L. Kuntze) using thin-layer hydration. International Journal of applied Pharmaceutics, 9, 38-43.
Jain, S., Singh, P., Mishra, V. and Vyas, S. P. (2005). Mannosylatedniosomes as adjuvant–carrier system for oral genetic immunization against Hepatitis B. Immunology letters, 101(1), 41-49.
Kumar, G. P. and Rajeshwarrao, P. (2011). Nonionic surfactant vesicular systems for effective drug delivery—an overview. Actapharmaceuticasinica B, 1(4), 208-219.
Kazi, K. M., Mandal, A. S., Biswas, N., Guha, A., Chatterjee, S., Behera, M. and Kuotsu, K. (2010). Niosome: a future of targeted drug delivery systems. Journal of advanced pharmaceutical technology & research, 1(4), 374.
Kaur, D. and Kumar, S. (2018). Niosomes: present scenario and future aspects. Journal of drug delivery and therapeutics, 8(5), 35-43.
Kida, S., Pantazis, A. W. R. O. and Weller, R. O. (1993). CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathology and applied neurobiology, 19(6), 480-488.
Kassem, M. A., El-Sawy, H. S., Abd-Allah, F. I., Abdelghany, T. M. and Khalid, M. (2017). Maximizing the therapeutic efficacy of imatinibmesylate–loaded niosomes on human colon adenocarcinoma using Box-Behnken design. Journal of pharmaceutical sciences, 106(1), 111-122.
Kamboj, S., Saini, V. and Bala, S. (2014). Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement. The scientific world journal, 2014.
Löwhagen, P., Johansson, B. B. and Nordborg, C. (1994). The nasal route of cerebrospinal fluid drainage in man. A light–microscope study. Neuropathology and applied neurobiology, 20(6), 543-550.
Miller, D. S. (2010). Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends in pharmacological sciences, 31(6), 246-254.
Mathison, S., Nagilla, R. and Kompella, U. B. (1998). Nasal route for direct delivery of solutes to the central nervous system: fact or fiction?. Journal of drug targeting, 5(6), 415-441.
Mahale, N. B., Thakkar, P. D., Mali, R. G., Walunj, D. R. and Chaudhari, S. R. (2012). Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Advances in colloid and interface science, 183, 46-54.
Marianecci, C., Di Marzio, L., Rinaldi, F., Celia, C., Paolino, D., Alhaique, F. andCarafa, M. (2014). Niosomes from 80s to present: the state of the art. Advances in colloid and interface science, 205, 187-206.
Moghassemi, S. and Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of controlled release, 185, 22-36.
Manosroi, A., Chutoprapat, R., Abe, M. and Manosroi, J. (2008). Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. International journal of pharmaceutics, 352(1-2), 248-255.
Manosroi, A., Jantrawut, P., Akazawa, H., Akihisa, T., Manosroi, W. and Manosroi, J. (2011). Transdermal absorption enhancement of gel containing elastic niosomes loaded with gallic acid from Terminaliachebula galls. Pharmaceutical biology, 49(6), 553-562.
Mullaicharam, A. R. and Murthy, R. S. R. (2006). Lung accumulation of niosome-entrapped gentamicin sulfate follows intravenous and intratracheal administration in rats. Journal of drug delivery science and technology, 16(2), 109-113.
Manosroi, A., Khanrin, P., Lohcharoenkal, W., Werner, R. G., Götz, F., Manosroi, W. and Manosroi, J. (2010). Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. International Journal of Pharmaceutics, 392(1-2), 304-310.
Mayer, L. D., Bally, M. B., Hope, M. J. and Cullis, P. R. (1985). Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential. BiochimicaetBiophysicaActa (BBA)-Biomembranes, 816(2), 294-302.
Martin, F. J. (1990). Pharmaceutical manufacturing of liposomes. Drugs and the pharmaceutical sciences, 41, 267-316.
Ma, H., Guo, D., Fan, Y., Wang, J., Cheng, J. and Zhang, X. (2018). Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation. Molecules, 23(7), 1756.
Martin, F. J. (1990). Pharmaceutical manufacturing of liposomes. Drugs and the pharmaceutical sciences, 41, 267-316.
Manconi, M., Valenti, D., Sinico, C., Lai, F., Loy, G. and Fadda, A. M. (2003). Niosomes as carriers for tretinoin: II. Influence of vesicular incorporation on tretinoinphotostability. International Journal of Pharmaceutics, 260(2), 261-272.
Mehrabi, M. R., Shokrgozar, M. A., Toliyat, T., Shirzad, M., Izadyari, A., ZoghiMofrad, L. andAkbarzadeh, A. (2020). Enhanced Therapeutic Efficacy of Vincristine Sulfate for Lymphoma Using Niosome-Based Drug Delivery. Jundishapur Journal of Natural Pharmaceutical Products, 15(3).
Mirzaie, A., Peirovi, N., Akbarzadeh, I., Moghtaderi, M., Heidari, F., Yeganeh, F. E. andBakhtiari, R. (2020). Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorganic Chemistry, 103, 104231.
Naderinezhad, S., Amoabediny, G. and Haghiralsadat, F. (2017). Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC advances, 7(48), 30008-30019.
Onochie, I. T. O., Nwakile, C. D., Umeyor, C. E., Uronnachi, E. M., Osonwa, U. E., Attama, A. A. and Esimone, C. O. (2013). Formulation and evaluation of niosomes of Benzyl penicillin. Journal of Applied Pharmaceutical Science, 3(12), 66.
Pajouhesh, H. and Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2(4), 541-553.
Perloff, M. D., Von Moltke, L. L., Marchand, J. E. and Greenblatt, D. J. (2001). Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. Journal of pharmaceutical sciences, 90(11), 1829-1837.
Patel, J., Ketkar, S., Patil, S., Fearnley, J., Mahadik, K. R. and Paradkar, A. R. (2015). Potentiating antimicrobial efficacy of propolis through niosomal-based system for administration. Integrative medicine research, 4(2), 94-101.
Rajera, R., Nagpal, K., Singh, S. K. and Mishra, D. N. (2011). Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin, 34(7), 945-953.
Ritwiset, A., Krongsuk, S. and Johns, J. R. (2016). Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: A molecular dynamics simulation study. Applied Surface Science, 380, 23-31.
Ruckmani, K. and Sankar, V. (2010). Formulation and optimization of zidovudineniosomes. AapsPharmscitech, 11(3), 1119-1127.
Sherry Chow, H. H., Chen, Z. and Matsuura, G. T. (1999). Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. Journal of pharmaceutical sciences, 88(8), 754-758.
Shinichiro, H., Takatsuka, Y., Tai, M. and Hiroyuki, M. (1981). Absorption of drugs from the nasal mucosa of rat. International journal of pharmaceutics, 7(4), 317-325.
Sahin, N. O. (2007). Niosomes as nanocarrier systems. Nanomaterials and nanosystems for biomedical applications, 67-81.
Shehata, T., Kimura, T., Higaki, K. and Ogawara, K. I. (2016). In-vivo disposition characteristics of PEG niosome and its interaction with serum proteins. International journal of pharmaceutics, 512(1), 322-328.
Sharma, V., Anandhakumar, S. and Sasidharan, M. (2015). Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Materials Science and Engineering: C, 56, 393-400.
Shtil, A. A., Grinchuk, T. M., Tee, L. I. L. I. A. N., Mechetner, E. B. and Ignatova, T. N. (2000). Overexpression of P-glycoprotein is associated with a decreased mitochondrial transmembrane potential in doxorubicin-selected K562 human leukemia cells. International journal of oncology, 17(2), 387-47.
Shaker, D. S., Shaker, M. A. and Hanafy, M. S. (2015). Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. International journal of pharmaceutics, 493(1-2), 285-294.
Shreedevi, H. M., Nesalin, J. A. J. and Mani, T. T. (2016). Development and evaluation of Stavudineniosome by ether injection method. Int. J. Pharm. Sci. Res, 7, 38-46.
Thorne, R. G., Emory, C. R., Ala, T. A. and Frey II, W. H. (1995). Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain research, 692(1-2), 278-282.
Thorne, R. G. and Frey, W. H. (2001). Delivery of neurotrophic factors to the central nervous system. Clinical pharmacokinetics, 40(12), 907-946.
Tavano, L., Alfano, P., Muzzalupo, R. and de Cindio, B. (2011). Niosomesvsmicroemulsions: new carriers for topical delivery of capsaicin. Colloids and surfaces B: Biointerfaces, 87(2), 333-339.
Teaima, M. H., El Mohamady, A. M., El-Nabarawi, M. A. and Mohamed, A. I. (2020). Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery. Drug development and industrial pharmacy, 46(5), 751-761.
Ueda, K., Okamura, N., Hirai, M., Tanigawara, Y., Saeki, T., Kioka, N. and Hori, R. (1992). Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. Journal of Biological Chemistry, 267(34), 24248-24252.
Verma, S. and Utreja, P. (2019). Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian journal of pharmaceutical sciences, 14(2), 117-129.
Vora, B., Khopade, A. J. and Jain, N. K. (1998). Proniosome based transdermal delivery of levonorgestrel for effective contraception. Journal of controlled release, 54(2), 149-165.
Waddad, A. Y., Abbad, S., Yu, F., Munyendo, W. L., Wang, J., Lv, H. and Zhou, J. (2013). Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. International journal of pharmaceutics, 456(2), 446-458.
Yuksel, N., Bayindir, Z. S., Aksakal, E. and Ozcelikay, A. T. (2016). In situ niosome forming maltodextrinproniosomes of candesartan cilexetil: In vitro and in vivo evaluations. International journal of biological macromolecules, 82, 453-463.
Zhang, S. and Morris, M. E. (2005). Efflux transporters in drug excretion. Drug delivery: principles and applications. Wiley, Hoboken, 381-398.
Zubairu, Y., Negi, L. M., Iqbal, Z. and Talegaonkar, S. (2015). Design and development of novel bioadhesiveniosomal formulation for the transcorneal delivery of anti-infective agent: In-vitro and ex-vivo investigations. asian journal of pharmaceutical sciences, 10(4), 322-330.