Pooja Sihag, Vijeta Sagwal and Upendra Kumar*
Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar- 125004, India
Email: baliyan.upenda@gmail.com
Received-06.01.2023, Revised-18.01.2023, Accepted-28.01.2023
Abstract: Global warming is a major issue of concern for the last few years, as it affects the growth and development of the cropthat reduced crop productivity. Among the crops, wheat is facing threat to high temperatures which is a primary source of food for the large population in developing countries. Though, plants have developed numerous mechanisms to adapt to the rising temperature, the negative impact of heat stress on wheat production is high. This review focused on the major effects of heat stress on the physiological and biochemical parameters of wheat. Also, the miRNAs expression under several high-temperature treatments and their involvement in the regulation of various heat stress-related genes were noticed.
Keywords: High temperature, miRNAs, heat tolerant, osmolytes, global warming
References
Aiqing, S., Somayanda, I., Sebastian, S. V., Singh, K., Gill, K., Prasad, P. V. V. and Jagadish, S. K. (2018). Heat stress during flowering affects time of day of flowering, seed set, and grain quality in spring wheat. Crop Science, 58(1), 380-392.
Akter, N. and Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for sustainable development, 37(5), 1-17.
Almeselmani, M., Deshmukh, P. and Sairam, R. (2009). High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agronomica Hungarica, 57(1): 1-14.
Amani, I., Fischer, R. A. and Reynolds, M. P. (1996). Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. Journal of Agronomy and Crop Science, 176(2), 119-129.
Ashraf, M. H. P. J. C. and Harris, P. J. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163-190.
Bahuguna, R. N. and Jagadish, K. S. (2015). Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111, 83-90.
Bajji, M., Kinet, J. M. and Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant growth regulation, 36(1), 61-70.
Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual review of plant biology, 59: 89.
Bala, P. and Sikder, S. (2017). Evaluation of heat tolerance of wheat genotypes through membrane thermostability test. MAYFEB Journal of Agricultural Science, 2: 1-6.
Blum, A. and Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science, 21(1): 43-47.
Caverzan, A., Casassola, A. and Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genetics and molecular biology, 39: 1-6.
Chunduri, V., Kaur, A., Kaur, S., Kumar, A., Sharma, S., Sharma, N. and Garg, M. (2021). Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day–night combined heat stresses during grain filling in wheat. Frontiers in plant science, 973.
Deryng, D., Conway, D., Ramankutty, N., Price, J. and Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9(3), 034011.
Dhanda, S. and Munjal, R. (2009). Cell membrane stability: combining ability and gene effects under heat stress conditions. Cereal Research Communications, 37(3), 409-417.
Farooq, M., Bramley, H., Palta, J. A. and Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6): 491-507.
Farooq, M., Wahid, A., Lee, D. J., Ito, O. and Siddique, K. H. (2009). Advances in drought resistance of rice. Critical Reviews in Plant Sciences, 28(4): 199-217.
Gautam, A., Agrawal, D., SaiPrasad, S. V. and Jajoo, A. (2014). A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiology and Molecular Biology of Plants, 20(4): 533-537.
Goswami, S., Kumar, R. R. and Rai, R. D. (2014). Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat (Triticum aestivum L.) under the heat stress. Australian Journal of Crop Science, 8(5): 697-705.
Hare, P. D. and Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant growth regulation, 21(2):79-102.
Hasan, M. A., Ahmed, J. U., Bahadur, M. M., Haque, M. M. and Sikder, S. (2007). Effect of late planting heat stress on membrane thermostability, proline content and heat susceptibility index of different wheat cultivars. Journal of the National Science Foundation of Sri Lanka, 35(2).
Hedhly, A., Hormaza, J. I. and Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in plant science, 14(1): 30-36.
Ivashuta, S., Banks, I. R., Wiggins, B. E., Zhang, Y., Ziegler, T. E., Roberts, J. K. and Heck, G. R. (2011). Regulation of gene expression in plants through miRNA inactivation. PloS one, 6(6): e21330.
Kalaji, H. M., Bosa, K., Kościelniak, J. and Żuk-Gołaszewska, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73: 64-72.
Kaushal, N., Bhandari, K., Siddique, K. H. and Nayyar, H. (2016). Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent food & agriculture, 2(1): 1134380.
Khan, A., Ahmad, M., Shah, M. K. N. and Ahmed, M. (2020). Performance of wheat genotypes for Morpho-Physiological traits using multivariate analysis under terminal heat stress. Pak. J. Bot, 52(6): 1981-1988.
Kumar, R. R., Goswami, S., Shamim, M., Mishra, U., Jain, M., Singh, K. and Praveen, S. (2017). Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Frontiers in Plant Science, 8: 1603.
Kumar, R. R., Goswami, S., Sharma, S. K., Kala, Y. K., Rai, G. K., Mishra, D. C. and Rai, R. D. (2015a). Harnessing next generation sequencing in climate change: RNA-Seq analysis of heat stress-responsive genes in wheat (Triticum aestivum L.). Omics: a journal of integrative biology, 19(10): 632-647.
Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Singh, S. D. and Rai, R. D. (2013). Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of plant biochemistry and biotechnology, 22(1):16-26.
Kumar, R. R., Pathak, H., Sharma, S. K., Kala, Y. K., Nirjal, M. K., Singh, G. P. and Rai, R. D. (2015b). Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Functional & Integrative Genomics, 15(3):323-348.
Kumari, M., Pudake, R. N., Singh, V. P. and Joshi, A. K. (2013). Association of staygreen trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica, 190(1):87-97.
Li, C. and Zhang, B. (2016). MicroRNAs in control of plant development. Journal of cellular physiology, 231(2): 303-313.
Li, J. F., Chung, H. S., Niu, Y., Bush, J., McCormack, M. and Sheen, J. (2013). Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. The Plant Cell, 25(5): 1507-1522.
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. and Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607-610.
Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J. I., Damsz, B. and Bressan, R. A. (2002). Does proline accumulation play an active role in stress‐induced growth reduction? The plant journal, 31(6): 699-712.
Mathur, S., Agrawal, D. and Jajoo, A. (2014). Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137: 116-126.
Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J., Kaspari, M., Helliker, B. R. and Enquist, B. J. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature plants, 2(9): 1-9.
Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R. and Joshi, A. K. (2013). Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field crops research, 151: 19-26.
Morales, D., Rodríguez, P., Dell’Amico, J., Nicolas, E., Torrecillas, A. and Sánchez-Blanco, M. J. (2003). High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum, 47(2): 203-208.
Mullan, D. and Pietragalla, J. (2012). Leaf relative water content. Physiological Breeding II: A field guide to wheat phenotyping, 25-27.
Nandha, A. K., Mehta, D. R., Tulsani, N. J., Umretiya, N., Delvadiya, N. and Kachhadiya, H. J. (2019). Transcriptome analysis of response to heat stress in heat tolerance and heat susceptible wheat (Triticum aestivum L.) genotypes. Journal of Pharmacognosy and Phytochemistry, 8(2): 275-284.
Papageorgiou, G. C. and Murata, N. (1995). The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynthesis Research, 44(3): 243-252.
Prasad, P. V. and Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology, 41(12): 1261-1269.
Prasad, P. V., Pisipati, S. R., Ristic, Z., Bukovnik, U. R. S. K. A. and Fritz, A. K. (2008). Impact of nighttime temperature on physiology and growth of spring wheat. Crop science, 48(6): 2372-2380.
Qaseem, M. F., Qureshi, R. and Shaheen, H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific reports, 9(1): 1-12.
Ragupathy, R., Ravichandran, S., Mahdi, M., Rahman, S., Huang, D., Reimer, E. and Cloutier, S. (2016). Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Scientific reports, 6(1): 1-15.
Rahman, M. A., Chikushi, J., Yoshida, S. and Karim, A. J. M. S. (2009). Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh Journal of Agricultural Research, 34(3): 360-372.
Ranjeet, R. K., Suneha, G., Sushil, K. S., Khushboo, S., Kritika, A. G., Narender, K. and Raj, D. R. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4): 83-91.
Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M. and Cloutier, S. (2019). MicroRNA-guided regulation of heat stress response in wheat. BMC genomics, 20(1): 1-16.
Rehman, S. U., Bilal, M., Rana, R. M., Tahir, M. N., Shah, M. K. N., Ayalew, H. and Yan, G. (2016). Cell membrane stability and chlorophyll content variation in wheat (Triticum aestivum) genotypes under conditions of heat and drought. Crop and Pasture Science, 67(7):712-718.
Reynolds, M. P., Balota, M., Delgado, M. I. B., Amani, I. and Fischer, R. A. (1994). Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Functional Plant Biology, 21(6): 717-730.
Ristic, Z., Bukovnik, U., Prasad, P. V. and West, M. (2008). A model for prediction of heat stability of photosynthetic membranes. Crop Science, 48(4): 1513-1522.
Rizza, F., Pagani, D., Gut, M., Prášil, I. T., Lago, C., Tondelli, A. and Stanca, A. M. (2011). Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. Crop Science, 51(6): 2759-2779.
Sailaja, B., Mangrauthia, S. K., Voleti, S. R., Subrahmanyam, D. and Ravindra Babu, V. (2017). Expression analysis of novel microRNAs in rice during high temperature stress. Bulletin of Environment, Pharmacology and Life Sciences, 6(1): 225-229.
Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Rizwan, M. S., Hussain, M. and Cheema, M. A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS One, 15(5): e0232974.
Shah, N. H. and Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and soil, 257(1): 219-226.
Shahid, M., Saleem, M. F., Anjum, S. A., Shahid, M. and Afzal, I. (2017). Effect of terminal heat stress on proline, secondary metabolites and yield components of wheat (Triticum aestivum L.) genotypes. Philipp. Agric. Sci, 100: 278-286.
Sharma, D. K., Andersen, S. B., Ottosen, C. O. and Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia plantarum, 153(2): 284-298.
Shrestha, K. N. (2011). Analysis of betaine aldehyde dehydrogenase encoding genes in wheat (Doctoral dissertation, Southern Cross University).
Siebert, S., Ewert, F., Rezaei, E. E., Kage, H. and Graß, R. (2014). Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environmental Research Letters, 9(4): 044012.
Sihag, P., Sagwal, V., Kumar, A., Balyan, P., Mir, R. R., Dhankher, O. P. and Kumar, U. (2021). Discovery of miRNAs and development of heat-responsive miRNA-SSR markers for characterization of wheat germplasm for terminal heat tolerance breeding. Frontiers in genetics, 12.
Smirnoff, N. and Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060.
Song, W. F., Zhao, L. J., Zhang, X. M., Zhang, Y. M., Li, J. L., Zhang, L. L. and Xiao, Z. M. (2015). Effect of timing of heat stress during grain filling in two wheat varieties under moderate and very high temperature. Indian Journal of Genetics and Plant Breeding, 75(1), 121-124.
Soni, A. and Munjal, R. (2023). Characterisation and evaluation of wheat genetic resources for heat stress tolerance using stay-green traits. Crop and Pasture Science.
Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C. and Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170: 206-215.
Thalmann, M. and Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214(3): 943-951.
Thomason, K., Babar, M. A., Erickson, J. E., Mulvaney, M., Beecher, C. and MacDonald, G. (2018). Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoS One, 13(6): e0197919.
Verbruggen, N. and Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids, 35(4): 753-759.
Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4): 669-687.
Wang, G. P., Hui, Z., Li, F., Zhao, M. R., Zhang, J. and Wang, W. (2010). Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports, 4(3): 213-222.
Webber, H., Ewert, F., Kimball, B. A., Siebert, S., White, J. W., Wall, G. W. and Gaiser, T. (2016). Simulating canopy temperature for modelling heat stress in cereals. Environmental Modelling & Software, 77: 143-155.
Yang, J., Sears, R. G., Gill, B. S. and Paulsen, G. M. (2002). Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica, 126(2): 185-193.
Yang, J., Sears, R. G., Gill, B. S. and Paulsen, G. M. (2002). Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica, 126(2): 185-193.
Zhang, B. and Unver, T. (2018). A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Plant Science, 274: 193-200.
Zhou, M. and Luo, H. (2013). MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant molecular biology, 83(1): 59-75.