2022, Issue 3, Volume 14

A REVIEW ON SEED PRE-SOWING TREATMENTS IN FORESTRY APPLICATIONS

Milkuri Chiranjeeva Reddy*, Ch. Bhargavi1, Mhaiskar Priya Rajendra2, K. Indu1 and Bojja Harish Babu2

1 Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh.

2 Forest College and Research Institute, Mulugu, Telangana State

Email: chiranjeevamilkuri@gmail.com

Received-18.01.2022, Revised-10.02.2022, Accepted-15.03.2022

Abstract: Seed dormancy is one of the major hurdles in germination which can be conquered by following some treatments which are termed as pre-sowing treatments. The dormancy of the seeds can be breaked by following different pre-sowing treatments like scarification (mechanical, acid), water soaking (hot/cold), using chemicals and plant growth regulators or by alternate wetting and drying prior to sowing. The type of treatment chosen depends on the type of dormancy exhibited by seed. The technological advancement laid forth a road map for improving traditional seed treatment technologies and developing new ones, such as priming, irradiation using gamma rays, magnetic exposure of seeds for enhancing germination. Another advanced technology which has found applications in all most all existing fields of science is nanotechnology which is now showing promising effect in seed germination. Lack of awareness in identifying suitable pre- sowing seed treatments for various tree species is an important concern for mass production and conservation of many species. In order to tackle this issue, some efforts are made to discuss selected seed treatments with their advancement and significance in this review.

Keywords: Dormancy, Scarification, Irradiation, Plant growth regulators, Nanotechnology

REFERENCES

Aladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys. 24: 321–324.

Google Scholar

Alamgir, M. and Hossain, M. K. (2005). Effect of pre-sowing treatments on Albizia procera (Roxb.) Benth seeds and initials development of seedlings in the nursery. Journal of Forestry and Environment3, 53-60.

Google Scholar

Ali, M., Sobze, J. M., Pham, T. H., Nadeem, M., Liu, C., Galagedara, L. and Thomas, R. (2020). Carbon nanoparticles functionalized with carboxylic acid improved the germination and seedling vigour in upland boreal forest species. Nanomaterials10(1), 176.

Google Scholar

Asif, J. M., Ali, A., Mazhar, M. Z., Tanvir, A., Zia, B., Anmbreen, I. and Mahr, M. S. (2020). Effect of different pre-treatments on seed germination of Prosopis juliflora and Dalbergia sissoo: a step towards mutation breeding. Journal of forest science66(2), 80-87.

Google Scholar

Azad, M. S., Zedan-Al-Musa, M. and Matin, M. A. (2010). Effects of pre-sowing treatments on seed germination of Melia azedarach. Journal of Forestry Research21(2), 193-196.

Google Scholar

Azad, S., Manik, M. R., Hasan, S. and Matin, A. (2011). Effect of different pre-sowing treatments on seed germination percentage and growth performance of Acacia auriculiformisJournal of Forestry Research22(2), 183-188.

      Google Scholar

Balouchi, H.R. and Sanavy S.A.M.M. (2009). Electromagnetic field impact on annual medics and dodder seed germination Int. Agrophysics, 23, 111–115.

Google Scholar

Baskin, C. C. and Baskin, J. M. (2005). Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class. Seed Science Research15(4), 357-360.

Google Scholar

Baskin, J. M. and Baskin, C. C. (2004). A classification system for seed dormancy. Seed science research14(1), 1-16.

Google Scholar

BenítezRodríguez, L., GamboadeBuen, A., SánchezCoronado, M. E., AlvaradoLópez, S., Soriano, D., Méndez, I. and OrozcoSegovia, A. (2014). Effects of seed burial on germination, protein mobilisation and seedling survival in Dodonaea viscosaPlant Biology16(4), 732-739.

Google Scholar

Bewley, J. D. (1997). Seed germination and dormancy. The plant cell, 9(7), 1055.

Google Scholar

Bewley, J. D. and Black, M. (1994). 445 Seeds: Physiology of Development and Germination (New York).

Google Scholar

Bhargava, Y. R. and Khalatkar, A. S. (1985). Improved performance of Tectona grandis seeds with gamma irradiation. Seed Research in Horticulture 215, 51-54.

Google Scholar

Bisht, T. S., Rawat, L., Chakraborty, B. and Yadav, V. (2018). A Recent Advances in Use of Plant Growth Regulators (PGRs) in Fruit Crops-A Review.

Google Scholar

Boswell, V. R. (1961). What seeds are and do: an introduction. Seed. The Yearbook of Agricultural USDA, 1-2.

Google Scholar

Chandrashekar, K. R., Somashekarappa, H. M. and Souframanien, J. (2013). Effect of gamma irradiation on germination, growth, and biochemical parameters of Terminalia arjuna Roxb. Radiation Protection and Environment36(1), 38.

Google Scholar

Chen, S.S.C. and Chang, J.L.L. (1972): Does gibberellic acid stimulate seed germination via amylase synthesis? Plant Physiology, 49: 441–442.

Google Scholar

Chiranjeevi, M. R., Muralidhara, B. M., Sneha, M. K. and Hongal, S. (2017). Effect of growth regulators and biofertilizers on germination and seedling growth of aonla (Emblica officinalis Gaertn). Int J Curr Microbiol App Sci6, 1320-1326.

Google Scholar

Copeland, L. O. and McDonald, M. F. (2012). Principles of seed science and technology. Springer Science & Business Media.

Google Scholar

Cornea-Cipcigan, M., Pamfil, D., Sisea, C. R. and Mărgăoan, R. (2020). Gibberellic acid can improve seed germination and ornamental quality of selected cyclamen species grown under short and long days. Agronomy10(4), 516.

    Google Scholar

De Souza, A., Garcia, D., Sueiro, L., Gilart, F., Porras, E. and Licea, L. (2006). Pre-sowing magnetic seed treatments of tomato seeds increase the growth and yield of plants. J. Bioelectric. 27: 247–257.

Google Scholar

Desta, B. and Amare, G. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture8(1), 1-15.

Google Scholar

Dwivedi, A. P. (1993). A text book of silviculture. International Book Distributors.

Google Scholar

Egley, G. H. (1989). Water-impermeable seed coverings as barriers to germination. In Recent advances in the development and germination of seeds (pp. 207-223). Springer, Boston, MA.

Google Scholar

Fenner, M. K., Fenner, M. and Thompson, K. (2005). The ecology of seeds. Cambridge University Press.

Google Scholar

FinchSavage, W. E. and LeubnerMetzger, G. (2006). Seed dormancy and the control of germination. New phytologist171(3), 501-523.

Google Scholar

GamboadeBuen, A., CruzOrtega, R., MartínezBarajas, E., SánchezCoronado, M. E. and OrozcoSegovia, A. (2006). Natural priming as an important metabolic event in the life history of Wigandia urens (Hydrophyllaceae) seeds. Physiologia Plantarum128(3), 520-530.

Google Scholar

George, E. F., Hall, M. A. and De Klerk, G. J. (2008). Plant growth regulators I: Introduction; auxins, their analogues and inhibitors. In Plant propagation by tissue culture (pp. 175-204). Springer, Dordrecht.

Google Scholar

González-Zertuche, L., Vázquez-Yanes, C., Gamboa, A., Sánchez-Coronado, M. E., Aguilera, P. and Orozco-Segovia, A. (2001). Natural priming of Wigandia urens seeds during burial: effects on germination, growth and protein expression. Seed Science Research11(1), 27-34.

Google Scholar

Gozales-Melendi, P., Fernandez-Pacheco, R., Coronado, M. J., Corredor, E., Testillano, P. S., Risueno, M. C., Marquina, C., Ibarra, M.R., Rubiales, D. and Perez-de-Iuque, A. (2008). Nanoparticles as smart treatment delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot, 101: 187-195.

Google Scholar

Gunkel, JE and Sparrow, AH. Ionizing radiations: Bio‑chemical, physiological and morphological aspects of their effects on plants. Encyc Plant Phys 1961;16: 555‑611.

Google Scholar

Rehman, H. U., Basra, S. M. A. and Farooq, M. (2011). “Field appraisal of seed priming to improve the growth, yield, and quality of direct seeded rice”, Turkish Journal of Agriculture and Forestry, Vol. 35, pp. 357-365.

Google Scholar

Hamad, S. O. and Anwer, L. S. (2021). Effect of Pre-treatments and Sowing Depths on Germination and Early Growth of Leucaena leucocephala seeds. Zanco Journal of Pure and Applied Sciences33(s1), 53-61.

Google Scholar

Han, C. and Yang, P. (2015). Studies on the molecular mechanisms of seed germination. Proteomics 15, 1671–1679.

Google Scholar

Hemalatha, M. and Chaudhari, S. B. (2021). Effect of pre sowing treatments on seed germination and its parameters in sandalwood (Santalum album L.). Journal of Pharmacognosy and Phytochemistry10(1), 92-95.

Google Scholar

Hilhorst, H. W. (1995). A critical update on seed dormancy. I. Primary dormancy1. Seed Science Research5(2), 61-73.

Google Scholar

Hossain, M. A., Arefin, M. K., Khan, B. M. and Rahman, M. A. (2005). Effects of seed treatments on germination and seedling growth attributes of Horitaki (Terminalia chebula Retz.) in the nursery. Research Journal of Agriculture and Biological Sciences1(2), 135-141.

Google Scholar

Hussain, I. S. A. and Jan, A. (2018). Vegetative propagation of Fig ‘Sawari’and ‘Tarnab Inzar’through stem cuttings. Journal of Horticultural Science and Technology1(1), 17-20.

Google Scholar

Jacobsen JV and Pressman E. (1979). A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta 144: 241– 248.

Google Scholar

Jacobsen, J. V. and Pressman, E. (1979). A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta144(3), 241-248.

Google Scholar

Jetti, A., Jetti, J. and Perla, R. (2017). Treatments to Break Seed Dormancy in Givotia rottleriformis Griff. Advances in Crop Science and Technology5(2), 1-3.

Google Scholar

Kermode, A. R. (2005). Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation24(4), 319-344.

Google Scholar

Khatana, K. J., Jadav, R. G. and Nehete, D. S. (2013). Influence of GA3 on germination and growth of acid lime cv. KAGZILIME seed (Citrus aurantifolia Swingle) under field as well as net house conditions. Asian Journal of Horticulture10(1), 11-16.

Google Scholar

Khodakovskaya, M., Dervishi, E., Mohammad, M., Xu, Y., Li, Z., Watanabe, F. and Biris, A.S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. Acs Nano, 3: 3221-3227.

Google Scholar

Kumar, K. G., Gawande, S. K. and Taide, Y. B. (1991). Effect of plant growth regulators on seed germination in Cassia fistula and Bauhinia purpurea. Indian Forester117(7), 575-576.

Kumar, V. (2015). Nursery and plantation practices in forestry. Scientific Publishers.

Google Scholar

Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., et al. (2006). Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 45, 309–319.

Google Scholar

Li, B. and Foley, M. E. (1997). Genetic and molecular control of seed dormancy. Trends in Plant Science2(10), 384-389.

Google Scholar

Lush, W. M., Kaye, P. E. and Groves, R. H. (1984). Germination of Clematis microphylla seeds following weathering and other treatments. Australian Journal of Botany32(2), 121-129.

Google Scholar

Martínez-Andújar, C., Ordiz, M. I., Huang, Z., Nonogaki, M., Beachy, R. N. and Nonogaki, H. (2011). Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc. Natl. Acad. Sci. U.S.A. 108, 17225–17229.

Moussa, H. (2011). Low dose of gamma irradiation enhanced drought tolerance in soybean. Acta Agronomica Hungarica, 59(1), 1-12.

Google Scholar

Olatunji, D., Maku, J. O. and Odumefun, O. P. (2013). The effect of pre-treatments on the germination and early seedlings growth of Acacia auriculiformis Cunn. Ex. Benth. African Journal of Plant Science7(8), 325-330.

Google Scholar

Pamei, K., Larkin, A. and Kumar, H. (2017). Effect of different treatments on the germination parameters and seedling quality index of Tectona grandis (Teak) under nursery condition. IJCS5(5), 2418-2424.

Google Scholar

Peraza-Villarreal, H., Sánchez-Coronado, M. E., Lindig-Cisneros, R., Tinoco-Ojanguren, C., Velázquez-Rosas, N., Cámara-Cabrales, L. and Orozco-Segovia, A. (2018). Seed priming effects on germination and seedling establishment of useful tropical trees for ecological restoration. Tropical Conservation Science11, 1940082918817886.

Google Scholar

São José, J. F. B., Volpiano, C. G., Vargas, L. K., Hernandes, M. A. S., Lisboa, B. B., Schlindwein, G. and Sampaio, J. A. T. (2019). Influence of hot water on breaking dormancy, incubation temperature and rhizobial inoculation on germination of Acacia mearnsii seeds. Australian Forestry82(3), 157-161.

Google Scholar

Savithramma, N., Ankanna, S. and Bhumi, G. (2012). Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision2(1), 2.

Google Scholar

Sharma, K. K., Singh, U. S., Sharma, P., Kumar, A. and Sharma, L. (2015). Seed treatments for sustainable agriculture-A review. Journal of Applied and Natural Science7(1), 521-539.

Google Scholar

Sharma, M. L. (1994). Enhancing the germination of stored bamboo seeds using plant growth regulators. Seed science and technology22(2), 313-317.

Google Scholar

Srinivasan, C. and Saraswathi, R. (2010). Nano Agriculture-Carbon nanotubes enhance tomato seed germination and plant growth. Current Science, 99: 274-275.

Google Scholar

Tanjina Hasnat, G. N., Hossain, M., Kalimuddin Bhuiyan, M. and Shafiul Alam, N. I. (2014). effect of pre. sowing treatments on germination and initial growth of seedlings of kusum (Schleichera oleosaInt. J. of Usuf. Mnst15(1), 3-9.

Google Scholar

Thounaojam, A. S. and Dhaduk, H. L. (2020). Enhancement of seed germination in Chironji (Buchanania lanzan Spreng) through physical and chemical treatments. Journal of Pharmacognosy and Phytochemistry9(1), 1354-1359.

Google Scholar

Tran, V. N. and Cavanagh, A. K. (1984). Structural aspects of dormancy. In Germination and reserve mobilization (pp. 1-44). Academic Press.

Google Scholar

Umarani, R., and Vanangamudi, K. (2004). Introduction to Tree seed technology. International Book Distributors. New Delhi, India. pp. 1- 199.

Google Scholar

Venkatesh, A., Vanangamudi, M., Vanangamudi, K., Parthiban, K. T., Ravichandran, V. and Rai, R. V. (2000). Effect of growth stimulants on seed germination and morpho-physiological attributes in pungam (Pongamia pinnata). Journal of Tropical Forest Science, 643-649.

Google Scholar

Virendra, S. (1990). Influence of indole acetic acid and indole butyric acid on seed germination of spruce. Indian Forester116(6), 450-454.

Google Scholar

Vishal, B. and Kumar, P. P. (2018). Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Frontiers in Plant Science9, 838.

Google Scholar

Viswanath, S. C., Pillai, P. K. C., Francis, S. and Hrideek, T. K. (2021). Seed germination behaviour of Terminalia paniculata Roth (Combretaceae), an economically important endemic tree to peninsular India.

Google Scholar

Vleeshouwers, L. M., Bouwmeester, H. J. and Karssen, C. M. (1995). Redefining seed dormancy: an attempt to integrate physiology and ecology. Journal of Ecology, 1031-1037.

Google Scholar

Yinan, Y., Yuan, L., Yougqing, Y. and Chunyang, L. (2005). Effect of seed pre-treatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet radiation. Environ. Exp. Bot. 54: 286–294.

Google Scholar

Zazai, K. G., Raina, N. S. and Sehgal, S. (2018). Effect of Pre-Sowing Treatments and Fruit Size on Germination of Terminalia arjunaInt. J. Curr. Microbiol. App. Sci7(9), 1926-1933.

Google Scholar