L. Saravanan and N. Sivaraj*
ICAR-National Bureau of Plant Genetic Resources, Regional Station, Hyderabad 500030, India
Received-01.03.2022, Revised-15.03.2022, Accepted-28.03.2022
Abstract: Oil palm bagworm, Metisa plana (Lepidoptera: Psychidae) is a serious insect pest of oil palm, Elaeis guineensis Jacq. in India. The pest is reported to cause severe defoliation on oil palm in oil palm gardens located in Andhra Pradesh, India. Hence, ecological niche modelling study was attempted to identify climate suitable locations for the pest spread in India as area under oil palm cultivation is expanding. Geographical coordinates of 37 pest presence sites, world climate grid files, nineteen bioclimatic variables, MaxEnt software, DIVA-GIS were used for the construction of ecological niche model of M. plana. The model indicated potential geographical locations (districts) in seven states viz., Andhra Pradesh, Karnataka, West Bengal, Kerala, Odisha, Telangana and Tamil Nadu for the spread of pest in India. One of the interesting predictions emerging from this study is that the pest is not likely to spread to North Eastern states of India and Eastern States, Andaman and Nicobar Islands, Gujarat, Goa, Maharashtra and Chhattisgarh. The predictions of potential distribution of the pest arrived at in this study should help in developing strategies for monitoring and managing this defoliator of oil palm.
Keywords: Bagworm, Metisa plana, DIVA-GIS, Max Ent model, Oil palm, India
References
Baloch, M. N., Fan, J., Haseeb, M. and Zhang, R. (2020). Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Central Asia. Insects,11: 172.
Carnaval, A. C. and Moritz, C. (2008). Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography,35: 1187–120.
Cheong, Y. L., Sajap, A. S., Hafidzi, M.N., Omar, D. and Abood, F. (2010). Outbreaks of bagworms and their natural enemies in an oil palm, Elaeis guineensis plantation at Huang Melintang, Perak, Malaysia. Journal of Entomology, 7: 141-151.
Chung, G. F., Sim, S. C., Hon, K. M. and Ramli, K. (1995). Monitoring and surveillance system for integrated pest management of leaf eating caterpillars in oil palm. The Planter, Kuala Lumpur 71: 253-263.
Corley, R. H. V. (1983). Photosynthesis and age of oil palm leaves. Photosynthetica, 17: 97-100.
Corley, R. H. V. and Donough, C. R. (1995). Effects of defoliation on sex differentiation in oil palm clones. Experimental Agriculture, 31: 177-189.
Darius, A. and Basri, M.W. (2000). Intensive IPM for management of oil palm pests. Oil Palm Bulletin 41: 1-14.
Dufrene, E. and Saugier, B. (1993). Gas exchange of oil palm in relation to light, vapour pressure deficit, temperature and leaf age. Functional Ecology, 7: 97-104.
Eitzinger, A., Läderach, P., Carmona, S., Navarro, C. and Collet, L. (2013). Prediction of the impact of climate change on coffee and mango growing areas in Haiti. Full Technical Report. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.
Elith, J., Graham, C. H. and Anderson, R.P. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecogeography, 29:129-151.
Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y.E. and Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions,17:43-57.
Ganeshaiah, K. N., Narayani Barve., Nilima Nath., Chandrashekara, K., Swamy, M. and Uma Shaanker, R. (2003). Predicting the potential geographical distribution of the sugarcane woolly aphid using GARP and DIVA-GIS. Current Sciences,85: 1526-1528.
Giblin-Davis, R. M. and Howard, F. W. (1989). Vulnerability of stressed palms to attack by Rhynchophorus cruentatus (Coleoptera: Curculionidae) and insecticidal control of the pest. Journal of Economic Entomology, 82: 1185-1190.
Henson, I. E. (1990). Photosynthesis and source-sink relationships in oil palm (Elaeis guineensis Jacq.). Transactions of Malaysian Society of Plant Physiology, 1: 165-171.
Henson, I. E. (1991). Limitations to gas exchange, growth and yield of young oil palm by soil water supply and atmospheric humidity. Transactions of Malaysian Society of Plant Physiology, 2: 39-45.
Hijmans, R. J. and Graham, C. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology,12: 2272-2281.
Ho, C.T., Yusof, I. and Khoo, K.C. (2011). Infestations by the bagworms Metisa plana and Pteroma pendula for the period 1986-2000 in major oil palm estates managed by Golden Hope Plantation Berhad in Peninsular Malaysia. Journal of Oil palm Research, 23: 1040-1050.
Kalidas, P., Ram Prasad, K. V. and Rammohan, K. (2002). Pest status in irrigated oil palm orchards of coastal areas of India. Journal Indian Society for Coastal Agricultural Research,20: 41-50.
Kok, C C., Eng, O K., Razak, A R. and Arshad, A M. (2011). Microstructure and life cycle of Metisa Plana walker (lepidoptera: psychidae). Journal of Sustainability Science and Management, 6 (1): 51-59.
Martínez, L. C., Hurtado, R. E., Araque, L. and Rincón, V. (2009). Avances de la campaña regional para elmanejo de la información de insectosdefoliadoresen la zona central. Palmas, 30:51-56.
Martinez, L.C., Plata-Rueda, A., Zanuncio, J. C. and Serrao, J. E. (2013). Leucothyreus femoratus (Coleoptera: Scarabaeidae): Feeding and behavioural activities as an oil palm defoliator. Florida Entomologist, 96: 55-63.
Philips, S J. and Dudik, M. (2008). Modeling of species distributions with MAXENT: new extensions and a comprehensive evaluation. Ecogeography,31: 161-175.
Phillips, S. J., Anderson, R.P. and Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling,190: 231-259.
Phillips, S. J., Dudik, M. and Schapire, R.E. (2004). A Maximum Entropy Approach to Species Distribution Modelling. In Proceedings of the Twenty-First InternationalConference on Machine Learning. Banff, Canada, pp. 655-662.
Sipayung, A., Chenon, R.D, and Sudharto, P.S. (1989). Recent work with viruses in the biological control of leaf eating caterpillars in North Sumatra, Indonesia. Buletin Pusat PenelitianMarihat, 9: 14-32.
Sivaraj, N., Elangovan, M., Kamala, V., Pandravada, S. R., Pranusha, P. and Chakrabarty, S. K. (2016). Maximum Entropy (Maxent) Approach to Sorghum landraces distribution modelling. Indian Journal of Plant Genetic Resources,29: 16-21.
Syed, R.A. and Saleh, H.A. (1998). Integrated pest management of bagworms in oil palm plantations of PTPP London Sumatra Indonesia TBK (with particular reference to MahasenacorbettiTams) in North Sumatra. Proc. 1998 Intl. Oil Palm Conf. Bali, Indonesia.
Tittensor, D. P., Baco, A. R., Brewin, P. E., Clark, M. R., Consalvey, M., Hall-Spencer, J., Rowden, A. A., Schlacher, T., Stocks, K. I. and Rogers, A. D. (2009). Predicting global habitat suitability for stony corals on seamounts. Journal Biogeography,36: 1111–1128.
Verbruggen, H., Tyberghein, L., Pauly, K., Vlaeminck, C., VanNieuwenhuyze, K., Kooistra, W., Leliaert, F. and De Clerck, O. (2009). Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Global Ecology and Biogeography,18: 393–405.
Williams, J. N., Seo, C. W., Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M. and Schwartz, M. W. (2009). Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions,15: 565–576.
Wollan, A. K., Bakkestuen, V., Kauserud, H., Gulden, G. and Halvorsen, R. (2008). Modelling and predicting fungal distribution patterns using herbarium data. Journal Biogeography,35: 2298–2310.
Wood, B. J., Liau, S. S. and Knecht, J. C. X. (1974). Trunk injection of systemic insecticides against the bagworm, Metisa plana (Lepidoptera: Psychidae) on oil palm. Oléagineux, 29: 499-505.
Young, A. M. (1977). Notes on the defoliation of coconut palm (Cocos nucifera) by the butterfly Opsiphanes quiteria quirinus in northeastern Cost Rica. Deutche Entomologische Zeitschrift, 24: 353-365.
Zeddam, J. L., Cruzado, J. A., Rodriguez, J. L., Ravallec, M. andSubilete, E. C. (2003). A cypovirus from the South American oil palm pest Norape argyrrhorea and its potential as a microbial control agent. Biocontrol, 48: 101-112.