M. Srinivas Rao1, M. Chandrashekar Rao1, N. Sivaraj*, K. Anitha2, Babu Abraham2, B. Parameswari2, Bhaskar Bajaru2 and Prasanna Holajjer2
1Deccan Exotics India Producer Company Limited (Farmer Producing Organisation, Aliyabad, Kondapur Mandal, SangaReddy district 502 306, Telangana, India
2ICAR-National Bureau of Plant Genetic Resources, Regional Station,
Hyderabad 50030, Telangana, India
Email: srinu.madhavaram@gmail.com
Received-03.09.2021, Revised-13.09.2021, Accepted-25.09.2021
Abstract: Dragon fruit (Hylocereus undatus) is a promising exotic horticultural crop in India. It is grown in tropical and subtropical regions around the globe in South East Asia, Africa, Central and South America. Ecological niche modelling studies using the maximum entropy approach has been used to assess the suitable dragon fruit growing regions in India. Dataset for dragon fruit presence locations (91) was obtained from various sources. WorldClim dataset representing current and future climate was downloaded from http:// www.worldclim.org. Dragon fruit presence locations dataset and WorldClim dataset were used with Maximum entropy (MaxEnt) modelling to generate the climate suitability map to show potential cultivation sites in India. The generated maps indicated that potential regions for cultivation of dragon fruit exists in several states of India viz., Andhra Pradesh, Arunachal Pradesh, Assam, Goa, Gujarat, Himachal Pradesh, Karnataka, Kerala, Madhya Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Odisha, Puducherry, Rajasthan, Sikkim, Tamil Nadu, Telangana, Tripura, Uttar Pradesh, West Bengal. The potential island regions identified are Andaman and Nicobar Islands.
Keywords: Dragon fruit, Hylocereus undatus, Ecological Niche Modelling, DIVA-GIS
References
Abirami, K., Swain S, Baskaran, V., Venkatesan, K. Sakthivel, K. and Bommayasamy, N. (2021). Distinguishing three Dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Sci Rep 11, 2894 https://doi.org/10.1038/s41598-021-81682-x.
Addeo, A. G., Guastadisegni, G. and Pisante, N. (2001). Land and water quality for sustainable and precision farming. In: Proc 1st World Congress on Sustainable Agriculture, Madrid pp. 1-4.
Arivalagan, M., Karunakaran, G. Roy, T.K., Dinsha, M, Sindhu, B.C., Shilpashree, V. M., Satisha, G.C and Shivashankara, K.S. (2021). Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry 353, 129426
Betancur, J. A., Muriel, S. B. & González, E. P. (2020). Morphological characterization of the red dragon fruit—Selenicereus undatus (Haw.) D.R. Hunt–under growing conditions in the municipality of San Jerónimo (Antioquia, Colombia). Rev. Fac. Nac. Agron. Medellín. 73(1), 9019–9027.
Easterling, W. E., Crosson, P. R., Rosenberg, N. J., McKenny, M. S., Katz, L. A. and Lemon, K. M. (1993). Agricultural impacts of and responses to climate-change in the Missouri- Iowa- Nebraska-Kansas (MINK) region. Climatic Change 24: 23-61.
Karunakaran, G. and M. Arivalagan (2019). Dragon Fruit – A New Introduction Crop with Promising market. Indian Horticulture 63(1):8-11
Le Bellec, F., Vaillant, F. and Imbert, E. (2006). Pitahaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruits, 61:237–25
Maji, A.K., Obi Reddy, G.P. and Sarkar, N.D. (2010) Degraded and wastelands of India: Status and spatial distribution. Project Director, Directorate of Information and Publications of Agriculture. Krishi Anusandhan Bhavan-I, New Delhi P.155.
Mizrahi, Y. (2020). Do We Need New Crops for Arid Regions? A Review of Fruit Species Domestication in Israel. Agronomy, 10: 1995.
Parthasarathy, U., Johny, A. K., Jayarajan, K., and Parthasarathy, V. A. (2007). Site suitability for turmeric production in India, a GIS interpretation. Natural Product Radiance 6(2): 142-147
Pa´sko, P., Galanty, A., Zagrodzki, P., Luksirikul, P.; Barasch, D., Nemirovski, A. and Gorinstein, S (2021). Dragon Fruits as a Reservoir of Natural Polyphenolics with Chemo preventive Properties. Molecules, 26, 2158. https:// doi.org/ 10.3390/ molecules 2608215.
Phillips, S. J., Dudik, M. and Schapire, R. E. (2004). A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Canada, 655-662.
Reddy, M. T., Begum, H., Sunil, N., Pandravada, S. R. and Sivaraj, N. (2015). Assessing Climate Suitability for Sustainable Vegetable Roselle (Hibiscus sabdariffa var. sabdariffa L.) Cultivation in India Using MaxEnt Model. Agricultural and Biological Sciences Journal 1(2): 62-7.
Rosenzweig, C., Allen Jr, L. H., Harper, L. A., Hollinger, S. E. and Jones, J. W. (1995). Climate change and Agriculture: Analysis of Potential International Impacts. ASA Special Publication Number 59, American Society of Agronomy Inc., Madison, W.
Sivaraj, N., Elangovan, M., Kamala, V., Pandravada, S. R., Pranusha, P., and Chakrabarty, S. K. (2016). Maximum Entropy (Maxent) Approach to Sorghum Landraces Distribution Modelling. Indian Journal of Plant Genetic Resources 29(1): 16-21.
Tubiello, F. N., Donatelli, M., Rosenzweig, C. and Stockle, C. O. (2000). Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13: 179-189
Tubiello, F. N., Donatelli, M., Rosenzweig, C. and Stockle, C. O. (2002). Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part 1: Wheat, potato, maize and citrus. Climate Research 20: 256-270
Wakchaure G.C., Satish Kumar, Meena K.K., Rane, J. and Pathak, H. (2020). Dragon Fruit Cultivation in India: Scope, Marketing, Constraints and Policy Issues. Technical BulletinNo. 46. ICAR–National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, India, p.54.