Cambay, S.R.*, Sandhu, S.K.,1 Srivastava, P.,1 Rana, M.,2 and Bains, N.S.1
Division of Genetics, IARI, New Delhi, 110012
1Department of Plant Breeding & Genetics, PAU, Ludhiana, 141012
2Division of Crop Improvement, IGFRI, Jhansi, 284128
Received-05.12.2018, Revised-26.12.2018
Abstract: Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome of common wheat. Numerous efforts have been made to harness this extensive and highly variable gene pool for wheat improvement. This follows two distinct approaches, first production of amphiploids, between Triticum turgidum and Aegilops tauschii, and second direct hybridization between Aegilops tauschii and Triticum aestivum; both approaches then involve backcrossing to Triticum aestivum. Long duration, winter habit and specific requirements for raising Aegilops tauschii often make it difficult for every breeder to utilize the resource in their breeding programme. We demonstrate an easy low cost protocol for raising Aegilops tauschii, three times a year to facilitate the hybridization programs.
Keywords: Growth chamber, faster breeding, hybridization, low cost
References
Alonso, L.C. and Kimber, G. (1984). Use of restitution nuclei to introduce alien genetic variation into hexaploid wheat. Z Pflanzenzuecht 92: 185-89.
Beales, J., Turner, A., Griffiths, S., Snape, J.W. and Laurie, D.A. (2007). A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet., 115:721–733.
Cox, T.S., Harrell, L.G., Cken, P. and Gill, B. S. (1991). Reproductive behaviour of hexaploid/diploid wheat hybrids. Plant Breed.,107: 105-18.
Diaz, A., Zikhali, M., Turner, A.S., Isaac, P. and Laurie, D.A. (2012). Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 7:e33234
Eig, A. (1929). Monographish-Kritische ubersicht der Gattung Aegilops. Repertorium Specierum Novarum Regni Vegetabilis. Beihefte, 55:1-28.
Fu, D., Szucs, P., Yan, L., Helguera, M., Skinner, J.S., Zitzewitz., J., Hayes, P.M. and Dubcovsky, J. (2005). Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65.
Gatford, K.T., Hearnden, P., Ogbonnaya, F., Eastwood, R.F. and Halloran, G.M. (2002). Novel resistance to pre-harvest sprouting in Australian wheat from the wild relative Triticum tauschii. Euphytica, 126: 67–76.
Gill, B. S. and Raupp, W. J. (1987). Direct genetic transfer from Aegilops squarrosa L. to hexaploid Wheat. Crop Sci 27: 445-50.
Gororo, N.N., Eagles, H.A., Eastwood, R. F., Nicolas, M. E. and Flood, R. G. (2002). Use of Triticum tauschii to improve yield of wheat in low lying environments. Euphytica, 123: 241-54.
Imtiaz, M., Ogbonnaya, F.C., Oman, J. and van Ginkel, M. (2008). Characterization of QTLs controlling genetic variation for pre-harvest sprouting in synthetic backcross derived wheat lines. Genetics, 178: 1725–36.
Kimber, G. (1984). Technique selection for the introduction of alien variation in wheat. Z Pflanzenzuecht. 92: 15-21.
Kippes, N., Debernardi, J., Vasquez-Gross, H.A., Akpinar, B.A., Budak, H., Kato, K., Chao, S., Akhunov, E. and Dubcovsky, J. (2015). Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci., 112:5401–5410.
Kippes, N., Zhu, J., Chen, A., Vanzetti, L., Lukaszewski, A., Nishida, H., Kato, K., Dvorak, J. and Dubcovsky, J. (2014). Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Mol Genet Genom., 289:47–62.
Li, Y., Zhou, R., Wang, J., Liao, X., Branlard, G. and Jia, J. (2012). Novel and favorable allele clusters for end use quality revealed by introgression lines derived from synthetic wheat. Mol Breeding., 29:627–643.
Mandeep, S., Bains, N. S., Kuldeep, S., Sharma, S. C. and Parveen, C. (2010). Molecular marker analysis of Karnal bunt resistant wheat- Aegilops tauschii introgression lines. Plant Dis Res., 25:107–112.
Matsuoka, Y. and Nasuda, S. (2004). Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet., 109: 1710-17.
Mc Fadden, E.S. and Sears, E.R. (1946). The origin of Triticum spelts and its free-threshing hexaploid relatives. J Hered., 37: 81-88.
Miranda, L.M., Murphy, J.P., Marshall, D. and Leath, S. (2006). Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet., 113:1497–504.
Nestor, Kippes., Andrew, Chen., Xiaoqin, Zhang., Adam, J., Lukaszewski, J. and Dubcovsky. (2016). Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes. Theor Appl Genet., 129:1417–1428.
Ogbonnaya, F.C., Abdalla, O.M., Mujeeb-Kazi., Kazi, A. G., Xu, S.S., Gosman, N., Lagudah, E.S., Bonnett, D., Sorrells, M. E., Tsujimoto, H. and Janick, J. (2013). Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breeding Reveiws. 37: 35–122.
Olson, E.L., Rouse, M.N., Pumphrey, M.O., Bowden, R.L, Gill, B.S. and Poland, J.A. (2013). Introgression of stem rust resistance genes Sr TA187 and Sr TA 171from Aegilops tauschii to wheat. Theor Appl Genet., 126: 2477-84.
Pestova, E., Ganal, M.W. and Röder, M.S. (2000). Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 43:689–697.
Rasheed, A., Ogbonnaya, F.C., Lagudah, E., Appels, R. and He, Z. (2018). The goat grass genome’s role in wheat improvement. Nature Plants, 4: 56-58.
Wang, J.R., Luo, M.C. and Chen, Z.X. (2013). Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol., 198: 925–937.
Watanabe, N., Fujii, Y., Takesada, N. and Martinek, P. (2006). Cytological and microsatellite mapping of genes for brittle rachis in a Triticum aestivum-Aegilops tauschii introgression line. Euphytica, 151:63–69
Watson, A., Ghosh, S., Matthew, J., William, S., Simmonds, J., Rey, M. D., Asyraf, M., Hatta, M., Hinchliffe, A., Steed, A., Reynolds, D., Nikolai, M., Breakspear, A., Korolev, A., Rayner, T., Laura., Riaz, A., William, M., Ryan, M., Edwards, D., Batley, J., Raman, H., Carter, J., Rogers, C., Domoney, C., Moore, G., Harwood, W., Nicholson, P., Mark, J., Ian, H., DeLacy., Zhou J., Uauy, C., Scott, A.B., Robert F.P., Brande, B., Wulff, H. and Hickey, T.L. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 41: 23-29.
Wilhelm, E.P., Turner, A.S. and Laurie, D.A. (2009). Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet., 118:285–294.
Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003). Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci., 100:6263–6268.