Hernández-Ramos Reyna-Margarita1, Hernández-Herrera Alejandro1, Hernández-Nava Angélica1,2, Castillo-Maldonado Irais1, Rivera-Guillén Mario-Alberto3, García-Garza Rubén4, Ramírez-Moreno Agustina5, Serrano-Gallardo Luis-Benjamín1 and Pedroza-Escobar David*
1Departamento de Bioquímica y Fitofarmacología del Centro de Investigación Biomédica de la Facultad de Medicina.Universidad Autónoma de Coahuila Unidad Torreón (UA de C), México
2Universidad Politécnica de Gómez Palacio, México
3Laboratorio de Salud Ambiental y Química Analítica del Departamento de Bioquímica y Fitofarmacología. Centro de Investigación Biomédica de la Facultad de Medicina (UA de C), México
4Departamento de Histología de la Facultad de Medicina (UA de C), México
5Facultad de Ciencias Biológicas Unidad Torreón (UA de C)
6Centro de Actividades Multidisciplinarias de Prevención CAMP, A.C., Torreón, México
Email: dpedroza@uadec.edu.mx
Received-06.12.2018, Revised-27.12.2018
Abstract: Castela texana (Torr. & A. Gray) Rose is a native plant to the arid regions of northern Mexico, whose medicinal properties includes antipyretic, antiparasitic, antibacterial and immunomodulatory activity. The objective of this work was to evaluate the immunomodulatory activity of the methanolic-extract of Castela texana leaf on the production of nitric oxide in murine peritoneal macrophages, since these cells are the major players of the first line of defense of the immune response. The citotoxicity of Castela texana methanolic-extracts (10, 100 and 1000 μg/mL) was evaluated with a haemolytic activity model. Then thioglycollate-elicited peritoneal cells were cultured and tested for nitric oxide production, which was determined by Griess method at 6, 12 and 24 h post-treatment within the following experimental groups 1) Negative control supplemented with 2% PBS, 2) Positive control supplemented with 2% LPS extract, 3) Positive control supplemented with 2% complete Freund´s adjuvant, and 4) Castela texana supplemented with 2% methanolic-extract 10 µg/mL. The Castela texana methanolic-extract showed a high cytotoxic activity so only the lowest concentration (10 μg/mL) was evaluated on the production of nitric oxide in murine macrophages. The Castela texana extract triggered a high production of nitric oxide at short times (6 and 12 h) compared to the concentration of nitric oxide induced by the positive controls with LPS and complete Freund’s adjuvant. It can be concluded that this extract may act as an acute activator of nitric oxide production in macrophages, settling an antecedent to study the use of Castela texana compounds as immunological adjuvants.
Keywords: Castela texana, Nitric oxide, Murine macrophages
REFERENCES
Abbas, A.K. and Lichtman, A.H. (2003).Métodos de estudio de la activación de linfocitos T, In: Inmunología celular y molecular. Spanish version of the 5th edn in English “Cellular and molecular immunology”, edited by Elsevier Science, (Madrid, España), 2003, 166-167.
Abdala-Díaz, R.T., Chabrillón M., Cabello-Pasini A., López-Soler B. and Figueroa, F.L. (2010). Efecto de los polisacáridos de Porphyridium cruentum sobre la actividad de la línea celular de macrófagos murinos RAW 264.7. Ciencias marinas. 36(4):345-353.
Aliprantis, A.O., Diez-Roux, G., Mulder, L.C.F., Zylchlinsky, A. and Lang, R.A. (1996).Do macrophages kill through apoptosis?. Immunol. Today. 17: 573-576.
Calzado-Flores, Carmina Carlota y Verde Star, María Julia y Morales Vallarta, Mario R. and Segura Luna, José Juan (2007).Inhibición del proceso de enquistamiento de Entamoeba invadens por Castela texana. Ciencia UANL. 10 (1). ISSN 1405-9177.
Calzado-Flores C., Segura-Luna J.J. and Flores Villanueva Z. (1991).In vitro study of different antiamoebic drugs. Proc. West. Pharmacol. Soc. 34:355-8.
Calzado-Flores C. (1995).Cytotoxicity of Chaparrin from Castela texana. Proc. West. Pharmacol. Soc. 38:49-50.
Calzado-Flores C., Guajardo-Touche E.M., Carranza-Rosales M.P. and Segura-Luna J.J. (1998).In vitro anti-trichomonic activity of Castela texana. Proc. West. Pharmacol. Soc. 41:173-174.
Canell, D.S and Johnson, M.C. (1970).Manual of the Vascular Plants of Texas, Texas Research Foundation, Renner, Texas; 911:612.
Celada, A. and Nathan, C.F. (1994).Macrophage activation revisited. Immunol. Today. 15:100-102.
Cuellar Mata, P., Solís Martínez, M. O., Sánchez Leyva, Ma. C., García Niero, R.M. and Arias Negrete, S. (2010). El óxido nítrico: una molécula biológica llena de contrastes. Acta Universitaria, Universidad de Guanajuato. 20(3): 24-34.
González Stuart Armando (2019). Allthorn castela – Herbal safety.
http://www.herbalsafety.utep.edu/herbal-fact-sheets/allthorn-castela/ (Accesed February 2019).
Gorocica, R. P., Chávez, S. R., Lascurain, L. R., Espinosa, M. B. and Zenteno, G. E. (1999).Óxido nítrico, una molécula multifuncional. Rev Inst Nal Enf Resp Mex. 12(4):300-304.
Herrera Lizzi (2014).Perfil del Macrófago I Biota et Scientia.
https://biotaetscientia.com/2014/01/08/perfil-del-macrofago. (Accesed February 2019).
Hernández-Urúza Miguel, A. and Alvarado-Navarro, Anabell (2001). Interleucinas e inmunidad innata. Rev Biomed. 12(4):272-280.
Hoover, D.L. and Nancy, C.A. (1984). Macrophage activation to kill Lieshmania tropica: defective intracelular killing of amastigotes by macrophages elicited with sterile inflammatory agents. J. Immunol. 132(3):1487-93.
López-Urrutia Luis Lorente (1999). Inducción de la producción de óxido nítrico por lipopolisacárido de Brucella en macrófagos de rata. PhD thesis, (Universidad de Salamanca, Spain).
Lu, Mingfang and Varley Alan, W. (2008). Host Inactivation of bacteria lipopolysaccharides prevent prolonged tolerance following gram-negative bacterial infection. Cell Host & Microbe, Elsevier inc. 4: 293-302.
Mac Micking, J., Xie, Q. and Natham, C. (1997).Nitric oxide and macrophage function. Annu Rev Immunol. 15: 323-350.
Mac Micking, J. D., North, R. J., La Course, R., Mudgett, J. S., Shah, S. K. and Nathan, C. F. (1997). Identification of nitric oxide synthase as a protective locus against tuberculosis. Proceedings of the National Academy of Sciences of the United States of America. 94(10): 5243-8.
Martínez M. (1959).Las Plantas Medicinales de Mexico. 4a Ed. Ediciones Botas, México DF, 100.
Martínez, F. O. and Gordon, S. (2014).The M1 and M2 paradigm of macrophage activation: time for reassessment. Prime Rep. 6(13.10):12703.
Nathan, C.F. (1987).Secretory products of macrophages. J. Clin. Invest. 79: 319- 326.
Pedroza-Escobar, D. (2016).Analisis de conglomerado de variables de laboratorio en muestras biologicas de hombres que viven con VIH y sospecha de tuberculosis pulmonar, PhD thesis, (Instituto Politecnico Nacional, Mexico city).
Rico-Rosillo, María Guadalupe and Vega-Robledo, Gloria Bertha (2012). Nuevo rumbo en macrófagos, inflamación y tejido adiposo. Rev Med Inst Mex Seguro Soc. 50 (1): 39-45.
Riera Romo, M., Pérez-Martínez, D. and Castillo Ferrer, C. (2016).Innate immunity in vertebrates: an overview. Immunology. 148(2):125-39.
Standley, P.C. (1923).Trees and Shrubs of México. NS Herbarium, Smithsonian Press, Washington, DC; 23:539.
Tamez, G. R. S., Rodríguez, P. C., Tamez, G. P. and Weber, J. R. (2001). Activación de macrófagos y linfocitos in vitro por extractos metanólicos en hojas de plantago major. Ciencia UANL. 4(3):304-313.
Uphof, J.C. (1968).Dictionary of Economic Plants. 5a Ed Verlag von J Cramer, Brasil. 113:339.
Zhang, M., Hanna, Michelle, Li, Jia, Butcher, Susan, Dai, Heping and Xiao, Wei (2010). Creation of a hyperpermeable yeast strain to genotoxic agents through combined inactivation of PDR and CWP genes. Toxicol Sci. 113(2):401-11.