View: Full Length Article
Akhilesh Kumar Dwivedi, Ashwani Kumar* and Sachin Kumar
Department of Biotechnology, KVSCOS, Swami Vivekanand Subharti University, Meerut, India
Department of Bioinformatics, Janta Vedic College, Baraut, Baghpat, -250611, India
Email:amritdhra1981@gmail.com
Received-28.05.2025, Revised-12.06.2025, Accepted-26.06.2025
Abstract: This study investigates the biogenic synthesis of nano-hydroxyapatite (nHAP) using Bacillus licheniformis, Bacillus subtilis, and Pseudomonas fluorescens, followed by comprehensive characterization to assess their physicochemical and structural properties. UV–Vis spectroscopy confirmed nanoparticle formation with absorption peaks at 238 and 280 nm (B. licheniformis), 241 and 278 nm (B. subtilis), and 245 and 281 nm (P. fluorescens), suggesting nucleation and presence of organic moieties. Spectral shoulders in B. subtilis and P. fluorescens indicated biomolecular interaction, unlike the sharper profile of B. licheniformis. FTIR analysis showed characteristic phosphate (PO₄³⁻) bands (~1040 and 560–565 cm⁻¹), hydroxyl groups (~3570 cm⁻¹), and minor carbonate (~1450 cm⁻¹) in all samples. Strong amide I (~1640 cm⁻¹) and II (~1540 cm⁻¹) bands in B. subtilis and P. fluorescens pointed to proteinaceous capping and biogenic origin, whereas B. licheniformis had sharper phosphate peaks and minimal organic signatures, indicating higher crystallinity. EDX confirmed elemental composition with Ca/P ratios near the ideal 1.67. B. licheniformis (1.61) produced the most stoichiometric and pure nHAP, followed by B. subtilis (1.59) and P. fluorescens (1.58), aligning with FTIR observations. DLS and zeta potential results showed B. licheniformis synthesized the smallest (32.4 ± 1.2 nm), most monodisperse (PDI 0.186), and stable (−34.2 ± 1.7 mV) particles. In contrast, P. fluorescens-derived nHAP was larger (39.3 ± 1.9 nm), more polydisperse (PDI 0.264), and less stable (−26.5 ± 2.2 mV).In conclusion, all three strains synthesized nHAP, but only B. subtilis and P. fluorescens exhibited strong biogenic characteristics. B. licheniformis yielded highly crystalline, near-stoichiometric nHAP, resembling chemically synthesized material, making it ideal for high-purity applications such as agriculture.
Keywords: Agricultural nanomaterials, Bacillus licheniformis, Bacillus subtilis, Pseudomonas fluorescens
REFERENCES
Abraham, A., Sharan Kumar, M., Krishna, D. A. and others. (2024). Development of nano-hydroxyapatite membrane using Momordicacharantia and study of its biodegradability for medical application. Biomass Conversion and Biorefinery, 14, 32289–32301. https://doi.org/10.1007/s13399-023-04929-9.
Alorku, K., Manoj, M. and Yuan, A. (2020). A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: A review. RSC Advances, 10(67), 40923–40939. https://doi.org/10.1039/D0RA08529D.
Copete, H., López, E. and Baudin, C. (2024). Synthesis and characterization of B-type carbonated hydroxyapatite materials: Effect of carbonate content on mechanical strength and in vitro degradation. Boletín de la Sociedad Española de Cerámica y Vidrio, 63(4), 255–267. https://doi.org/10.1016/j.bsecv.2023.12.001.
Dorozhkin, S. V. (2010). Bioceramics of calcium orthophosphates. Biomaterials, 31(7), 1465–1485. https://doi.org/10.1016/j.biomaterials.2009.10.050.
Eltarahony, M., Zaki, S., ElKady, M. and Abd-El-Haleem, D. (2018). Biosynthesis, characterization of some combined nanoparticles, and its biocide potency against a broad spectrum of pathogens. Journal of Nanomaterials, 2018, Article ID 5263814, 1–13. https://doi.org/10.1155/2018/5263814.
Fishman, M. R., Giglio, K., Fay, D., et al. (2018). Physiological and genetic characterization of calcium phosphate precipitation by Pseudomonas species. Scientific Reports, 8, 10156. https://doi.org/10.1038/s41598-018-28525-4.
Fleet, M. E. (2009). Infrared spectra of carbonate apatites: ν2-Region bands. Biomaterials, 30(7), 1473–1481. https://doi.org/10.1016/j.biomaterials.2008.12.007.
Ganta, D. D., Hirpaye, B. Y., Raghavanpillai, S. K. and Menber, S. Y. (2022). Green synthesis of hydroxyapatite nanoparticles using Monoonlongifolium leaf extract for removal of fluoride from aqueous solution. Journal of Chemistry, 2022, Article ID 4917604. https://doi.org/10.1155/2022/4917604.
Gheisari, H., Karamian, E. and Abdellahi, M. (2015). A novel hydroxyapatite–Hardystonite nanocomposite ceramic. Ceramics International, 41(4), 5967–5975. https://doi.org/10.1016/j.ceramint.2015.01.033.
González-Márquez, H., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. (2018). Physiological and genetic characterization of calcium phosphate precipitation by Pseudomonas species. Frontiers in Microbiology, 9, 2671. https://doi.org/10.3389/fmicb.2018.02671.
Hou, X., Zhang, L., Zhou, Z., Luo, X., Wang, T., Zhao, X., Lu, B., Chen, F. and Zheng, L. (2022). Calcium phosphate-based biomaterials for bone repair. Journal of Functional Biomaterials, 13(4), 187. https://doi.org/10.3390/jfb13040187.
Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W. and Slootweg, J. C. (2021). Phosphorus recovery and recycling – closing the loop. Chemical Society Reviews, 50(1), 87–101. https://doi.org/10.1039/d0cs01150a.
Kokubo, T. and Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017.
Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600–612. https://doi.org/10.1002/jbm.10280.
Ng, C. W. W., Yan, W. H., Tsim, K. W. K., So, P. S., Xia, Y. T. and To, C. T. (2022). Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon, 8(11), e11674. https://doi.org/10.1016/j.heliyon.2022.e11674.
Noruzi, M., Hadian, P., Soleimanpour, L., et al. (2023). Hydroxyapatite nanoparticles: an alternative to conventional phosphorus fertilizers in acidic culture media. Chemical and Biological Technologies in Agriculture, 10, 71. https://doi.org/10.1186/s40538-023-00437-0.
Paramasivan, M., Sampath Kumar, T. S., Kanniyappan, H., Muthuvijayan, V. and Chandra, T. S. (2023a). Biomimetic ion substituted and co-substituted hydroxyapatite nanoparticle synthesis using Serratiamarcescens. Scientific Reports, 13, 4513. https://doi.org/10.1038/s41598-023-30996-z.
Paramasivan, M., Sampath Kumar, T. S., Kanniyappan, H., Muthuvijayan, V. and Chandra, T. S. (2023b). Microbial biomineralization of hydroxyapatite nanocrystals using Bacillus tequilensis. Ceramics International, 49(4), 5621–5629. https://doi.org/10.1016/j.ceramint.2022.10.138.
Podila, R., Chen, R., Ke, P. C. and Rao, A. M. (2012). Effects of surface functional groups on the formation of nanoparticle-protein corona. arXiv preprint arXiv:1209.5475. https://arxiv.org/abs/1209.5475.
Priyam, A., Das, R. K., Schultz, A. and others (2019). A new method for biological synthesis of agriculturally relevant nanohydroxyapatite with elucidated effects on soil bacteria. Scientific Reports, 9, 15083. https://doi.org/10.1038/s41598-019-51514-0.
Ramesh, S., Tan, C. Y., Hamdi, M., Sopyan, I. and Teng, W. D. (2008). The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics. Proceedings of SPIE, 6423, 64233A. https://doi.org/10.1117/12.779890.
Rey, C., Combes, C., Drouet, C. and Glimcher, M. J. (2009). Bone mineral: Update on chemical composition and structure. Osteoporosis International, 20(6), 1013–1021. https://doi.org/10.1007/s00198-009-0860-y.
Sahba, R., SeyedSadjadi, M., Sajjadi, A.K., Farhadyar, N. and Sadeghi, B. (2018). Preparation and characterization of friendly colloidal Hydroxyapatite based on natural Milk’s casein. Int. J. Nano Dimens., 9 (3): 238-245.
Silva-Holguín, P. N. and Reyes-López, S. Y. (2020). Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response, 18(3), 1559325820951342. https://doi.org/10.1177/1559325820951342.
Socrates, G. (2004). Infrared and Raman characteristic group frequencies: Tables and charts (3rd ed.). John Wiley and Sons.
Terminé, J. D. and Posner, A. S. (1966). Infrared determination of the percentage of crystallinity in apatitic calcium phosphates. Nature, 211(5053), 268–270. https://doi.org/10.1038/211268a0.
Viju Kumar, V. G. and Ananthu, A. P. (2018). Green synthesis and characterization of iron oxide nanoparticles using Phyllanthusniruri extract. Oriental Journal of Chemistry, 34(5), 2473–2479. https://doi.org/10.13005/ojc/340547.