Jose N.1, Maya T.2*, Gopal K. S.1, Gomez S.1 and Thankamony K.3
1College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala,
2Pineapple Research Station, Kerala Agricultural University, Vazhakkulam, Kerala and
3Aromatic and Medicinal plants research station, Odakkali, Kerala
Email: maya.t@kau.in
Received-17.09.2024, Revised-10.10.2024, Accepted-24.10.2024
Abstract: Disposal of overripe and market-rejected pineapple (Ananas comosus (L.) Merr) fruits poses a serious economic and sustainability challenge. This study focuses on physico-chemical characterisation of pineapple wastes and the valorisation of peel waste as substrate for nata production with Acetobacter xylinum. The juice, peel, and pomace of market-rejected fruits recorded total sugar content of 11.10±0.08 %, 7.33±0.02%, and 5.68± 0.01% respectively, making them ideal substrates for fermentation. Nata de pina, with a thickness of 8 mm and an average yield of 34.62 %, could be obtained from pineapple peel waste, highlighting its’ potential as a valuable substrate for nata production. The rich amount of fiber, cellulose, and carbohydrates observed with the peel and pomace makes them highly suitable for biorefinery processes, supporting a circular bioeconomy model.
Keywords: Nata de pina, pineapple waste, physico-chemical properties, valorization
REFERENCES
Almeida, D. M., Prestes, R. A., Fonseca, A. F., Woiciechowski, A. L. and Wosiacki, G. (2013). Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water. BrazilianJournal of Microbiology, 44(1):197-206
Badjona, A., Adubofuor, J., Amoah, I. and Diako, C. (2019). Valorisation of carrot and pineapple pomaces for rock buns development. Scientific African, 6, e00160.
Bakri, N. F. M., Ishak, Z. and Jusoh, A. Z. (2020). Quantification of nutritional composition and some antinutrient factors of banana peels and pineapple skins. Asian Food Science Journal, 18(4): 1-10.
Castro, C.: Zuluaga, R.: Putaux, J. L.; Caro, G.; Mondragon, I.; and Gañán, P. (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agro-industrial wastes. Carbohydrate Polymers, 84(1): 96–102
Chalchisa, T. and Dereje, B. (2021). From waste to food: Utilisation of pineapple peels for vinegar production. MOJ Food Processing and Technology, 9(1): 1-5.
Dahunsi, S. O. (2019). Liquefaction of pineapple peel: Pretreatment and process optimization. Energy, 185: 1017-1031.
Hemalatha, R. and Anbuselvi, S. (2013). Physicohemical constituents of pineapple pulp and waste. Journal of Chemical and Pharmaceutical Research, 5(2): 240-242.
Khanagoudar, S. K., Narayanaswamy, B., Kumar, J. and Pampangouda, P. (2016). Effect of carbon sources, inorganic nitrogen sources on the yield of Nata-de-pina, Environment and Ecology, 34(2A): 782-786.
Kodagoda, K.and Marapana, R. (2017). Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physico-chemical properties. Journal of Pharmacognosy and Phytochemistry, 6(3): 492-497
Mala, T., Piayura, S. and Itthivadhanapong, P. (2024). Characterization of driedpineapple (Ananas comosus L.) peel powder and its application as a novel functionalfood ingredient in cracker product. Future Foods,9: 100322.
Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A.and Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food chemistry, 135(3): 1520-1526.
Mikkelsen, D., Flanagan, B. M., Dykes, G. A. and Gidley, M. J. (2009). Influence ofdifferent carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology,107(2): 576–583
Miller, E. V. and Schaal, E. E. (1951), Individual variation of the fruits of the pineapple (Ananas comosus L. Merr.) in regard to certain constituents of the juice. Food Research,16(3):252-7.
Rabiu, Z., Maigari, F. U., Lawan, U.and Mukhtar, Z. G. (2018). Pineapple waste utilisation as a sustainable means of waste management. Sustainable technologies for the management of agricultural wastes, Springer nature, Singapore Ltd 143-154 pp.
Ranganna, S. (1997). Handbook of Analysis and Quality Control for Fruit and Vegetable Products. 2nd Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 11-12pp.
Rani, D. S. and Nand, K. (2004). Ensilage of pineapple processing waste for methane generation. Waste management, 24(5): 523-528.
Samreen, C. V., Edukondalu, L., Beera, V. and Rao, V. S. (2020). Physico-chemical characteristics of pomegranate and pineapple juice. Indian Journal of Ecology, 43: 60-63.
Sadasivam, S. and Manickam, A.(1996). Biochemical Methods. New AgeInternational Publishers, New Delhi, 184-185p.
Schramm, M. and Hestrin, S. (1954). Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology, 11(1): 123-129.
Selani, M. M., Brazaca, S. G. C., Dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A. and Bianchini, A. (2014), Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163: 23–30.
Sutanto, A. (2012). Pineapple liquid waste as nata de pina raw material. Makara Journal of Technology, 16(1): 10.
Tanaka, K., Hilary, Z. D.and Ishizaki, A. (1999). Investigation of the utility of pineapple juice and pineapple waste material as low-cost substrate for ethanol fermentation by Zymomonas mobilis. Journal of bioscience and bioengineering, 87(5): 642-646.
Tran, T. T., Nguyen B. L. and Nguyen, V. M. (2008). Physico-chemical properties of pineapple at different maturity levels. The first international conference on food science and technology. Vietnam.
Yovita, A.; Afifah, D. N.; and Candra, A. (2020). Total lactic acid bacteria, fibre content, and physical properties of Nata de pina between various parts of honey pineapple variety (Ananas comosus [L.] Merr. Food Research.,4(3): 24–30