2024, Issue 9, Volume 16

ENDOPHYTES FOR THE MANAGEMENT OF PLANT VIRUSES

Farhana AP, Krishnapriya PJ*, Heera G, Anu Rajan SS, Sherin A Salam, Saru Sara Sam and

Arya S Raj

College of Agriculture, Vellayani, (Kerala Agricultural University),

Thiruvananthapuram, Kerala 695 522

Email: krishnapriya.pj@kau.in

Received-01.09.2024, Revised-12.09.2024, Accepted-27.09.2024

Abstract: Plant diseases caused by viruses account for an economic loss of about more than 30 billion US dollars a year. Endophytes are the future probiotics for plant health with great potential as biocontrol agents against plant viruses. Arbuscular mycorrhizal fungi and Piriformospora indica are the widely exploited fungal endophytes for management of plant viruses. Biocontrol activity of many other fungal endophytes are reported against viruses, viz., Beauveria bassiana, Trichoderma harzianum and Metarhizium anisopliae. Biocontrol activity of many bacterial endophytes are also reported against viruses viz.,Pantoea agglomeransand Paenibacilluspasadenensis. A continued research pipeline consisting of screening, in vitro and in vivo testing, biomass production and commercialization of endophytes as biocontrol agents can contribute to sustainable agriculture.

Keywords: Endophyte, mycorrhiza, Piriformospora indica, plant viruses

REFERENCES

Aamir, M., Rai, K.K., Zehra, A., Kumar, S., Yadav, M., Shukla, V. and Upadhyay, R.S. (2020). Fungal endophytes: Classification, diversity, ecological role and their relevance in sustainable agriculture. Microbial Endophytes, 12: 291-323.

Google Scholar

Abdelkhalek, A., Behiry, S.I. and Al-Askar, A.A. (2020).Bacillus velezensis PEA1 inhibits Fusarium oxysporum growth and induces systemic resistance to Cucumber mosaic virus. Agron, 10(9): 1312.

Google Scholar

Alex, T. (2017). Exploration of natural products from botanicals and fungal root endophytes for the management of Cowpea mosaic virus. M.Sc. (Ag) thesis, Kerala Agricultural University, Thrissur, 147p.

Google Scholar

Aseel, D.G., Rashad, Y.M. and Hammad, S.M. (2019). Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against Tomato mosaic virus. Scientific Reports, 9(1): 9692.

Google Scholar

Auge, R.M., Toler, H.D. and Saxton, A.M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 25(1): 13-24.

Google Scholar

Baldi, A., Jain, A., Gupta, N., Srivastava, A.K. and Bisaria, V.S. (2008). Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacinavermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report.Biotechnology letters, 30(9): 1671-1677.

Google Scholar

Baum, C., El-Tohamy, W. and Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae,187:131-141.

Google Scholar

Bucher, M., Hause, B., Krajinski, F. and Kuster, H. (2014). Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytologist, 204(4):833-840.

Google Scholar

Cameron, Duncan, D., Neal, A.L., Saskia, C.M. and Jurriaan, T. (2013). Mycorrhiza-induced resistance: more than the sum of its parts? Trends in Plant Science, 18(10):539-545.

Google Scholar

CamposSoriano LIDIA, GarciaMartinez, J. and Segundo, B.S. (2012). The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defense‐related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology, 13 (6): 579-592.

Google Scholar

Chandran, K., Sreeja, S.J. and Johnson, J.M. (2021). Beneficial root endophytic Piriformospora indica inhibits the infection of Blackeye cowpea mosaic virus in yard long bean with enhanced growth promotion. Journal of Tropical Agriculture, 59(1): 22-30.

Google Scholar

Chandrasekaran, M. and Paramasivan, M. (2022). Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis. Plant and Soil, 1-9.

Google Scholar

Chippy (2020). Management of Bhendi yellow vein mosaic virus using beneficial fungal root endophyte Piriformospora indica. M. Sc. (Ag) thesis, Kerala Agricultural University, Thrissur, 95p.

Google Scholar

Compant, S., Clement, C. and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5): 669-678.

Google Scholar

Deshmukh, S.,Huckelhoven, R., Schafer, P., Imani, J., Sharma, M., Weiss, M., Waller, F. and Kogel, K.H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. The Proceedings of the National Academy of Sciences, 103(49): 18450-18457.

Google Scholar

Dolatabadi, H.K., Goltapeh, E.M., Moieni, A., Jaimand, K., Sardrood, B.P. and Varma, A. (2011). Effect of Piriformospora indica and Sebacinavermifera on plant growth and essential oil yield in Thymus vulgaris in vitro and in vivo experiments. Symbiosis, 53(1): 29-35.

Google Scholar

Fakhro, A., Rocio, D., Linares, A., Bargen, S.V., Martina, B., Buttner, C., Grosch, R., Schwarz, D. and Franken, P. (2009). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20: 191-200.

Google Scholar

Fouad, M.O., Essahibi, A., Benhiba, L. and Qaddoury, A. (2014). Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research, 3: 763-771.

Google Scholar

Gouda, S., Das, G., Sen, S.K., Shin, H.S. and Patra, J.K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology,7:1538.

Google Scholar

Hao, Z., Fayolle, L., Tuinen, D., Chatagnier, O., Li, X., Gianinazzi. S. Gianinazzi-Pearson, V. (2012). Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defense gene responses in grapevine. Journal of Experimental Botany, 63(10): 3657-3672.

Google Scholar

Hardoim, P.R.,Van Overbeek, L.S., Berg, G., Pirttila, A.M., Compant. S., Campisano, A., Doring, M. and Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology, 79(3): 293-320.

Google Scholar

Jaber, L.R. and Salem, N.M. (2014). Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Science and Technology, 24(10): 1096-1109.

Google Scholar

Jaiswal, N., Singh, M., Dubey, R.S.,Venkataramanappa, V. and Datta, D. (2013). Phytochemicals and antioxidative enzymes defence mechanism on occurrence of yellow vein mosaic disease of pumpkin (Cucurbita moschata). Biotechnology, 3(3): 287-295.

Google Scholar

Jha, P., Panwar, J. and Jha, P.N. (2018). Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. Journal of Environmental Sustainability, 1:25-38.

Google Scholar

Jones, R.A. (2021). Global plant virus disease pandemics and epidemics. Plants, 10(2):233.

Google Scholar

Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A. and Pozo, M.J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 38: 651-664.

Google Scholar

Kandel, S.L., Joubert, P.M. and Doty, S.L. (2017). Bacterial endophyte colonization and distribution within the plants. Microorganisms, 5(4): 77.

Google Scholar

Kawasaki, A., Donn, S., Ryan, P.R., Mathesius, U., Devilla, R., Jones, A. and Watt, M. (2016). Microbiome and exudates of the root and rhizosphere of Brachypodiumdistachyon, a model for wheat. PloS one, 11(10): p.e0164533.

Google Scholar

Kendrick, B. and Berch, S. (1985). In: Comprehensive Biotechnology. Oxford, 4: 109-150.

Google Scholar

Khan, M.R. and Jairajpuri, M.S. (2010). Nematode infestation in food crops-national scenario. Nematode Infestations, Part I. Food Crop, 1-16.

Google Scholar

Kiarie, S.,Nyasani, J.O.,Gohole, L.S.,Maniania, N.K.and Subramanian, S. (2020). Impact of fungal endophyte colonization of maize (Zea mays L.) on induced resistance to thrips-and aphid-transmitted viruses. Plants, 9(4): 416.

Google Scholar

Kishorkumar, C., Harish, S., Karthikeyan, G., Sharmila, J.,Varanavasiappan, S. and Nivedha, M. (2023). Antiviral Efficacy of Bacillus sp. against Groundnut bud necrosis orthotospovirus inCowpea. International Journal of Plant and Soil Science. 35(18): 790-800.

Google Scholar

Kumar, M., Yadav, V., Tuteja, N. and Johri, A.K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiol, 155: 780-790.

Google Scholar

Lee, J.Y. (2014). New and old roles of plasmodesmata in immunity and parallels to tunneling nanotubes. Plant Science, 221: 13-20.

Google Scholar

Lehtonen, P.T., Helander, M., Siddiqui, S.A., Lehto, K. and Saikkonen, K. (2006). Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biology Letters, 2(4): 620-623.

Google Scholar

Lekshmi, R.K. (2021). Evaluation of Piriformospora indica against Piper yellow mottle virus in black pepper. M.Sc. (Ag.) thesis, Kerala Agricultural University, Thrissur, 150p.

Google Scholar

Lodewyckx, C.,Vangronsveld, J., Porteous, F., Moore, E.R., Taghavi, S.,Mezgeay, M. Lelie, D.V. (2002). Endophytic bacteria and their potential applications.Critical Reviews in Plant Science, 21(6): 583-606.

Google Scholar

Maela,P.M. and Serepa-Dlamini, M.H. (2019). Current understanding of bacterial endophytes, their diversity, colonization and their roles in promoting plant growth. Applied Microbiology, 5:157.

Google Scholar

Maffei, G., Miozzi, L., Fiorilli, V., Novero, M., Lanfranco, L. and Accotto, G.P. (2014). The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl sardinia virus (TYLCSV). Mycorrhiza, 24: 179-186.

Google Scholar

Meera, N.V. (2023). Management of virus disease complex in chilli using the beneficial fungal root endophyte Piriformospora indica. M.Sc. (Ag) thesis, Kerala Agricultural university, Thrissur, 64p.

Google Scholar

Meneses, C., Gonçalves, T.,Alqueres, S.,Rouws, L., Serrato, R. and Vidal, M. (2017). Gluconacetobacterdiazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil, 416:133–147.

Google Scholar

Miozzi, L., Catoni, M., Fiorilli, V., Mullineaux, P.M., Accotto, G.P. and Lanfranco, L. (2011). Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. Molecular Plant-Microbe Interactions, 24(12): 1562-1572.

Google Scholar

Miozzi, L., Vaira, A.M., Brilli, F., Casarin, V., Berti, M., Ferrandino, A., Nerva, L.,Accotto, G.P. and Lanfranco, L. (2020). Arbuscular mycorrhizal symbiosis primes tolerance to Cucumber mosaic virus in tomato. Viruses, 12(6): 675.

Google Scholar

Murphy, J.F., Reddy, M.S., Ryu, C.M., Kloepper, J.W. and Li, R. (2003). Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Indian Phytopathology, 93(10): 1301-1307.

Google Scholar

Petrini, O. (1991). Fungal endophytes of tree leaves. New York, NY: Springer New York. Microbial Ecology, 4(9): 179-197.

Google Scholar

Pieterse, C.M.,Zamioudis, C., Berendsen, R.L., Weller, D.M., VanWees, S.C. and Bakker, P.A. (2014). Induced systemic resistance by beneficial microbes.Annual Review of Phytopathology,52: 347-375.

Google Scholar

Powell, J.R. and Rillig, M.C. (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New phytologist220(4): 1059-1075.

Google Scholar

Puschel, D., Bitterlich, M., Rydlova, J. Jansa, J. (2020). Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza, 30:299- 313.

Google Scholar

Qiang, X., Weiss, M., Kogel, K.H. Schafer, P. (2012). Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. Molecular Plant Pathology, 13(5): 508- 518.

Google Scholar

Quilambo, O.A. (2004). The vesicular-arbuscular mycorrhizal symbiosis. African Journal of Biotechnology, 2(12):539-546.

Google Scholar

Rani, S., Kumar, P., Dahiya, P., Maheswari, R., Dang, A.S. and Suneja, P. (2022). Endophytism: A Multidimensional Approach to Plant–Prokaryotic Microbe Interaction. Frontiers in Microbiology13: 861235.

Google Scholar

Rodriguez, R.J.,White Jr, J.F., Arnold, A.E. and Redman, A.R.A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182(2): 314-330.

Google Scholar

Safeer, M.M. and Thara, S.S. (2022). Integrated management of Cymbidium mosaic disease in commercial Dendrobium orchids using root   endophytic   fungi   Piriformospora indica. Cogent Food and Agriculture, 8(1): 2139848.

Google Scholar

Saleh, D., Sharma, M., Seguin, P. and Jabaji, S. (2020) Organic acids and root exudates of Brachypodiumdistachyon: effects on chemotaxis and biofilm formation of endophytic bacteria. Canadian Journal of Microbiology, 66(10): 562-575.

Google Scholar

Sam, S.S. (2020). Evaluation of beneficial fungal root endophyte, Piriformospora indica for the management of Tomato leaf curl virus. M. Sc. (Ag) thesis, Kerala Agricultural University, Thrissur, 156p.

Google Scholar

Sarma, M.V.R.K., Kumar, V., Saharan, K., Srivastava, R., Sharma, A.K., Prakash, A., Sahai, V. and Bisaria, V.S. (2011). Application of inorganic carrier-based formulations of fluorescent Pseudomonas and Piriformospora indica on tomato plants and evaluation of their efficacy.Canadian Journal of Microbiology, 111(2): 456- 466.

Google Scholar

Schafer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., PonsKuhnemann, J., Sonnewald, S., Sonnewald, U. and Kogel, K.H. (2009). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indicaThe Plant Journal59(3): 461-474.

Google Scholar

Serfling, A., Wirsel, S.G., Lind, V. and Deising, H.B. (2007). Performance of the biocontrol fungusPiriformospora indica on wheat under greenhouse and field conditions. Phytopathology, 97(4): 523-531.

Google Scholar

Shahzad, G.I.R., Passera, A.,Maldera, G., Casati, P., Marcello, I. and Bianco, P.A. (2022). Biocontrol potential of endophytic plant-growth-promoting bacteria against phytopathogenic viruses: molecular interaction with the host plant and comparison with chitosan. International Journal of Molecular Sciences, 23(13): 6990.

Google Scholar

Shapiro, L.R.,Salvaudon, L., Mauck, K.E., Pulido, H., DeMoraes, C.M., Stephenson, A.G. and Mescher, M.C. (2013). Disease interactions in a shared host plant: effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease. PLoS One, 8(10): 77393.

Google Scholar

Shaul, O.,Galili, S.,Volpin, H., Ginzberg, I., Elad, Y., Chet, I. and Kapulnik, Y. (1999). Mycorrhiza- induced changes in disease severity and PR protein expression in tobacco leaves. Molecular Plant-Microbe Interactions, 12(11): 1000-1007.

Google Scholar

Smith, S.E. and Read, D.J. (2008). Colonisation of root and anatomy of Arbuscular mycorrhiza. In: Mycorrhizal symbiosis. Academic press, 42-145.

Google Scholar

Subodh, K.M. and Dipita, G. (2020). Climate Change and Soil Interactions. Elsevier Ltd.

Google Scholar

Tollenaere, C., Lacombe, S.,Wonni, I., Barro, M.,Ndougonna, C.,Gnacko, F., Sereme, D., Jacobs, J.M., Hebrard, E., Cunnac, S.and Brugidou, C. (2017). Virus-bacteria rice co-infection in Africa: Field estimation, reciprocal effects, molecular mechanisms, and evolutionary implications. Frontiers in Plant Science, 8: 645.

Google Scholar

Varma, A., Bakshi, M., Lou, B., Hartmann, A. and Oelmueller, R. (2012).Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agricultural Research, 1(2): 117-131.

Google Scholar

Verma, S., Varma, A., Rexer, K.H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Butehorn, B. and Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90: 896–902.

Google Scholar

Vuorinen, A.L., Kelloniemi, J. and Valkonen, J.P. (2011). Why do viruses need phloem for systemic invasion of plants? Plant Science, 181(4): 355-363.

Google Scholar

Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K. and Fischer, M. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield.The Proceedings of the National Academy of Sciences, 102: 13386–13391.

Google Scholar

Wang, H., Zheng, J., Ren, X., Yu, T., Varma, A., Lou, B. and Zheng, X. (2015). Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Journal of Plant Growth Regulation, 76 (3): 303-313.

Google Scholar

Yang, Y., Han, X., Liang, Y., Ghosh, A., Chen, J. and Tang, M. (2015). The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PloS one, 10(12): 0145726.

Google Scholar

Zamioudis, C. and Pieterse, C.M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25(2): 139-150.

Google Scholar