2024, Issue 1, Volume 16

AMF-MEDIATED DEFENSE RESPONSES IN CROP PLANTS AGAINST PHYTOPATHOGENIC FUNGI

Sreechithra M.S., Sherin A. Salam*, Krishnapriya P.J., Anu Rajan S. and Heera G.

College of Agriculture, Vellayani,  (Kerala Agricultural University),  Thiruvananthapuram,
Kerala 695 522

Email: sherin.salam@kau.in

Received-03.01.2024, Revised-14.01.2024, Accepted-25.01.2024

Abstract: In a symbiotic relationship, Arbuscular Mycorrhizal Fungi (AMF) enhance the host’s absorption of nutrients such as phosphate and nitrate while the heterotrophic fungal partner is provided with photosynthates from the host plant. Mycorrhiza-induced resistance,  or MIR,  is a trait of AMF-colonized plants that is attributed to a variety of mechanisms,  including enhanced plant nutrition,  altered root morphology and rhizosphere environment,  controlled synthesis of secondary metabolites,  competition for invasion sites and nutrients,  stimulation of the plant defense system to elicit defense responses that include morphological,  biochemical,  and molecular ones,  thus effectively managing fungal diseases. Therefore, in sustainable agriculture, AMF can be employed as an important tool in integrated crop disease management.

Keywords: AMF, defense responses, mechanisms, phyto pathogenic fungi

REFERENCES

Ahammed, G., Mao, Q., Yan, Y., Wu, M., Wang, Y., Ren, J., Guo, P., Liu, A. and Chen, S. (2020). Role of melatonin in arbuscular mycorrhizal fungi induced resistance to Fusarium wilt in cucumber. Phytopathol, 110(5):999-1009.

Google Scholar

Bennett, A., Garcia, J., Bever, J., Bennett, A., Alers-garcia, J. and Bever, J. (2006). Three-way

Interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis.  AmNat, 167(2):141-152.

Google Scholar

Campo,  S.,  Martín-Cardoso,  H.,  Olivé,  M.,  Pla,  E.,  Catala-Forner,  M.,  Martínez-Eixarch,  M. and San Segundo,  B. (2020). Effect of root colonization by arbuscular mycorrhizal fungion growth,  productivity and blast resistance in rice. Rice, 13(1):1-14.

Google Scholar

Chen,  M.,  Bruisson,  S.,  Bapaume,  L.,  Darbon,  G.,  Glauser,  G.,  Schorderet,  M. and Reinhardt,  D. (2021). VAPYRIN attenuates defense by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. New Phytol. 229(6): 3481-3496.

Google Scholar

Chen,  Q.,  Wu W,  Qi S.,  Cheng,  H.,  Li,  Q.,  Ran,  Q.,  Dai,  Z.,  Du,  L.,  Egan,  S. and Thomas,  T. (2021). Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant Wedelia trilobata. J Appl Microbiol, 130(2):582-591.

Chisholm,  S.,  Coaker, G.,  Day,  B. and Staskawicz,  B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4):803-814.

Google Scholar

Dangl, J.L., Horvath, D.M.and Staskawicz, B.J. (2013). Pivoting the plant immune system from dissection to deployment. Science, 341(6147):746-751.

Google Scholar

Dodds, P.N. and Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet, 11(8):539-548.

Eke,  P.,  Chatue,  G. C.,  Wakam,  L. N.,  Kouipou,  R. M.,  Fokou,  P. and Boyom,  F. (2016). Mycorrhiza consortia suppress the Fusarium rootrot (Fusarium solani f.sp. phaseoli) in common bean (Phaseolus vulgaris L.). Biol Control, 103:240-250.

Google Scholar

Gazzar,  N.,  El-Hai,  K. M.,  Teama,  S. A. and Rabie,  G,  H. (2023). Enhancing Vicia faba’s immunity against Rhizoctonia solani rootrot diseases by arbuscular mycorrhizal fungi and nano chitosan. BMC Plant Biol, 23(1): 403.

Google Scholar

Harley, J.L. (1989). The significance of mycorrhiza. Mycol Res, 92(2):129-139.

Google Scholar

Hashem,  A., Akhter,  A., Alqarawi, A. A., Singh, G., Almutairi,  K.F.andAbd_Allah, E. F. (2021). Mycorrhizal fungi induced activation of tomato defense system mitigates Fusarium wilt stress. Saudi J Biol Sci, 28(10): 5442-5450.

Google Scholar

Jaiti,  F.,  Meddich,  A. and El-Hadrami,  I. (2007). Effectiveness of arbuscular mycorrhizal                                                          Google Scholar

Jalaluldeen,  A. M.,  Sijam,  K. and Ramadan,  N. A. (2020). Active changes of lignifications-related enzymes in chilli pepper response to Glomus mosseae against Fusarium oxysporum. Aust J Basic Appl Sci, 14(6):1-6.

Google Scholar

Kadam,  S.,  Pable,  A. A. and Barvkar,  V. T. (2020). Mycorrhiza induced resistance (MIR): a defense developed through synergistic engagement of phytohormones, metabolites and rhizosphere. Funct Plant Biol,7(10):880-890.

Google Scholar

Kapoor, R. and Bhatnagar, A. K. (2007). Attenuation of cadmium toxicity in mycorrhizal celery(Apium graveolens L.).World J Microbiol Biotechnol, 23:1083-1089.

Google Scholar

Kirk,  P. M.,  Cannon,  P. F.,  Minter,  D. W. and Stalpers,  J. A. (2008). Dictionary of the Fungi, 10thed.Wallingford, UK: CABI.

Google Scholar

    fungi in the protection of date palm (Phoenix dactylifera L.)against bayoud disease. PhysiolMol Plant Pathol., 71(4-6):166-173.

Google Scholar

Kloppholz,  S.,  Kuhn,  H. and Requena,  N. (2011). A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol, 21(14): 1204-1209.

Google Scholar

Leake,  J.,  Johnson,  D.,  Donnelly,  D.,  Muckle,  G.,  Boddy,  L. and Read,  D. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot, 82(8):1016-1045.

Lee,C,S.,Lee,Y.J.andJeun,Y.C.(2005) Observations of infection structures on the leaves ofcucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol J,21(3):237-243.

Google Scholar

Li,  J.,  Cai,  B.,  Chang,  S.,  Yang,  Y.,  Zi,  S. and Liu,  T. (2023). Mechanisms associated with the synergistic induction of resistance to tobacco black shank in tobacco by arbuscular mycorrhizal fungi and β-amino butyric acid. Front Plant Sci, 14.  

Google Scholar

Maharshi,  A.,  Kumar,  G.,  Mukherjee,  A.,  Raghuwanshi,  R.,  Singh,  H. B. and Sarma,  B. K. (2019). Arbuscular mycorrhizal colonization and activation of plant defense responses against phytopathogens. Microbial Interventions in Agriculture and Environment: Volume 1: Research Trends, Priorities and Prospects: 219-240.

Google Scholar

Marquez, N., Giachero, M.L., Gallou, A., Debat, H.J., Cranenbrouck, S., DiRienzo, J.A., Pozo, M. J.,  Ducasse,  D. A. and Declerck,  S. (2018). Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina. Mol Plant Microbe Interact, 31(8):842-855.

Google Scholar

McDowell, J.M. (2019). Focus on activation, regulation, and evolution of MTI and ETI Mol Plant Microbe Interact,32(1):5

Google Scholar

Mur,  L. A.,  Kenton,  P.,  Lloyd,  A. J.,  Ougham,  H. and Prats,  E. (2008). The hyper sensitive response; the centenary is upon us but how much do we know? J Exp Bot, 59(3):501-520.

Google Scholar

Nair,  A.,  Kolet,  S. P.,  Thulasiram,  H. V. and Bhargava,  S. (2015). Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol, 17(3):625-631.

Google Scholar

Rashad,  Y. M.,  Abbas,  M. A.,  Soliman, H. M.,  Abdel-Fattah,  G. G. and Abdel-Fattah,  G. M. (2020). Synergy between endophytic Bacillus amyloliquefaciens GGA and arbuscular mycorrhizal fungi induces plant defense responses against white rot of garlic and improves host plant growth. Phyto pathol Mediterr, 59(1):169-186.

Google Scholar

Sanmartin,  N.,  Sanchez-Bel P.,  Pastor,  V.,  Pastor-Fernandez,  J.,  Mateu,  D.,  Pozo,  M., Cerezo,  M. and Flors,  V. (2020). Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Sci, 298:110595.  

Google Scholar

Sarathambal,  C.,  Jeevalatha,  A.,  Sivaranjani,  R.,  Biju,  C. N.,  Charles,  S.,  Srinivasan,  V.,   

George,P., Peter,B. and Radhika, R. (2023).Arbuscular mycorrhizal colonization alters biochemical,  molecular defense responses and root exudate composition against Phytophthora capsici infection in black pepper. Rhizosphere, 25:100651.

Google Scholar

Schübler, A., Schwarzott, D., Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res, 105: 1413– 1421.

Google Scholar

Singh,  M.,  Mishra,  M.,  Srivastava,  D. K.,  Singh,  P. K. (2020). Biological control of Fusarium wilt of tomato by arbuscular mycorrhizal fungi with intercropping. Plant Pathol Quar, 10:1-9.

Google Scholar

Smith,  S. and Read,  D. (1997). Mycorrhizal symbiosis,  2 ed. Academic Press,  London.

                                                Google Scholar

Smith, S.E., Jakobsen, I., Grønlund, M.andSmith, F.A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol, 156(3):1050-1057.

Google Scholar

Song,  Y. Y.,  Cao,  M.,  Xie,  L. J.,  Liang,  X. T.,  Zeng,  R. S.,  Su,  Y. J.,  Huang,  J. H.,  Wang,  R. L. and Luo,  S. M. (2011). Induction of DIMBOA accumulation and systemic defense responses as mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza, 21:721-731.

Google Scholar

Tian,  L.,  Chang,  C.,  Ma,  L.,  Nasir,  F.,  Zhang,  J.,  Li,  W.,  Tran,  L. P. and Tian,  C. (2019). Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. Rice, 12: 1-19.

Google Scholar

Tian,  L.,  Zou,  Y. N.,  Wu,  Q,  S. and Kuča,  K. (2021). Mycorrhiza-induced plant defense responses in trifoliate orange infected by Phytophthora parasitica. Acta Physiologiae Plantarum, 43:1-8.

Google Scholar

Villani, A., Tommasi, F. and Paciolla, C. (2021). The arbuscular mycorrhizal fungus Glomus viscosum improves the tolerance to Verticillium wilt in artichoke by modulating theantioxidantdefense systems.Cells, 10(8):1944.

Google Scholar

Wang,  X.,  Ding,  T.,  Li,  Y.,  Guo,  Y.,  Li,  Y. and Duan,  T. (2020). Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt. J Appl Microbiol, 129(3):665-679.

Google Scholar

Wang,  H.,  Hao,  Z.,  Zhang,  X.,  Xie,  W. and Chen,  B. (2022). Arbuscular mycorrhizal fungi induced plant resistance against Fusarium wilt in jasmonate biosynthesis defective mutant and wild type of tomato. J Fungi,8(5):422.

Google Scholar

Zhang, Q., Gao, X., Ren, Y., Ding, X., Qiu, J., Li, N., Zeng, F.andChu, Z. (2018). Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int J Mol Sci, 19(1):241.

Google Scholar

                                                Google Scholar