STUDY OF BIO-MORPHOLOGICAL CHARACTERS OF GARLIC PLANT IN RELATION TO THRIPS *THRIPS TABACI* LINDEMAN POPULATION

Bhumika Dewangan* and Sonali Deole

Department of Entomology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh-492012 Email: bhumikadewangan@gmail.com

Received-04.08.2021, Revised-15.08.2021, Accepted-26.08.2021

Abstract: The investigation on Bio-morphological characters of garlic plant in relation to thrips populationwas carried out at Horticulture farm, Indira Gandhi Krishi Vishwavidyalaya, Raipur during 2020-2021. From the foregoing investigation it becomes clear that among the 20 genotypes the maximum plant height was recorded in the genotypes Yamuna safed-4 (38.43cm) and minimum plant height was recorded in genotype GN-20-08 (28.32) and the correlation of thrips with plant height (r =-0.52*), highest neck diameter was observed in the genotype GN-20-50 (6.65cm) whereas, the lowest neck diameter was observed in GN-20-52 (4.68cm) and the correlation of thrips with neck diameter (r =-0.47*), the maximum angle between leaves was observed in the genotype GN-20-41 (17.53°). and the minimum angle observed in GN-20-52 (8.1°) and the correlation of thrips with leaf angle found (0.70**) and the maximum number of leaf/plant recorded in the genotype GN-20-43 (6.63) and the minimum number of leaf/plant observed in GN-20-62 (4.92) and the correlation of thrips with plant height (r =-0.48*). Bio morphological character *i.e.*, plant height, neck diameter, leaf angle and number of leaf /plant found significant but negatively correlated.

Keywords: Bio-morphological, Garlic, Leaf angle, Neck diameter, Plant height, Thrips

REFERENCES

Ellis, B.W., Bradley, F.M. and Atthowe, H. (Eds.) (1996). The organic gardener's handbook of natural insect and disease control: A complete problem-solving guide to keeping your garden and yard 1698 healthy without chemicals. Rodale. pp. 331.

Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedure for Agricultural Research. John Wiley and sons publication 2nd edition.

Hill, D.S. (1983). Tropical Crops and Their Pest Spectra. In: Agricultural Insect Pests of the Tropics and Their control. Cambridge University Press, London. Pp 614.

Iciek, M., Kwiecień, I. and Włodek, L. (2009). Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen, 50: 247-265.

Martin, N. A. and workman, P. J. (2006). A new bioassay for determining the susceptibility of onion

(Allium cepa) bulbs to onion thrips, *Thrips tabaci* (Thysanoptera: Thripidae). New Zealand Journal of Crop and Horticultural Science, v. 34, n. 1, p. 85-92.

National horticulture board. (2019). http://www.nhb.gov.in.

Patel, H.C., Patel, J.J. and Patel, P.B. (2012). Screening of onion genotype/cultivars for susceptibility to thrips, *Thrips tabaci* Lindeman. An Int. e-J; 1(4):492-496.

Satyanaravana, P., Singh, P. P., Prasad, R. and Kumar, J. (2017). screening of onion genotypes in order to identify tolerant or resistant against thrips (*Thrips tabaci* lindeman). ISSN 0972-0030 J. Exp. Zool India Vol. 20, No. 1, pp. 333-337.

Shonga, E. and Getu, E. (2018). evaluation of shallot cultivars against onion thrips, *Thrips tabaci* Lindeman (Thysanoptera: thripidae) in bishoftu, Ethiopia. Ethiop. J. Sci., 41(1):8-14.

Journal of Plant Development Sciences Vol. 13(8): 609-613. 2021