EFFECT OF NITROGEN FIXING BACTERIA ON TILLERING, PHOTOSYNTHETIC RATE AND CHLOROPHYLL CONTENT IN PLANT GROWTH REGULATOR INDUCED NODULATED WHEAT

Reena Tomer, S. P. Singh, Sudhir Kumar and J. D. S. Panwar*

Department of Botany, J V College, Baraut (Baghpat) *Department of Plant Physiology, IARI, Delhi

Abstract: Under laboratory conditions the seedlings were raised to induce the nodule-like out growths using different growth regulators 2, 4-D (0.5 ppm), IBA (8 ppm) and NAA (8 ppm) in nitrogen free Hoagland solution. The seedlings were inoculated with bacterial culture such as *Azorhizobium caulinodans* (ORS 571) and *Nostoc* (mixed strains) in wheat variety C-306. Another set was raised with *Azorhizobium caulinodans* and *Nostoc* without plant growth regulators as uninoculated control. The treated paranodulated wheat seedlings were transferred to pots. The data collected on 60 days after transplanting revealed that the plants treated with *Nostoc* either alone or with different growth regulators had higher tiller number, chlorophyll content and leaf area per plant. The maximum effect was observed with IBA + *Nostoc* followed by 2, 4-D and NAA as compare to *Nostoc* treated plants. The *Azorhizobium caulinodans* treated plants were also better than control; it was also observed that the photosynthetic rate was maximum with 2, 4-D treated plants followed by *Azorhizobium caulinodans* treated plants followed by *Nostoc* along with growth regulators; however IBA and *Azorhizobium caulinodans* gives the maximum biomass production.

Keywords: Plant growth regulators, Azorhizobium caulinodans, Nostoc, Nodulation, Photosynthesis, Chlorophyll content, Tiller number

REFERENCES

- Al-Mallah M.K.; Davey, M.R. and Cocking, E.C. (1989). Formation of nodular structures on rice seedlings by *rhizobia J. Exp. Bot.* **41**: 1567-1572.
- Amutha, K. and Kannaiyan, S. (1999). Effect of 2, 4-D, NAA and inoculation with *Azorhizobium caulinodans* on induction of lateral rootlets and *para* nodules in rice. *Indian J. Microbiol.* 39: 125-128.
- Baldani, J.I.; Caruso, L.; Baldani, V.L.D.; Goi, S.R. and Dobereiner, J. (1997). Recent advances in BNF with non-legume plants. *Soil Biol. Biochem.* 29: 911-922.
- Baldani, V.L.D.; Dobereiner, J.I. and Dobereiner,
 J. (1983). Effects of *Azorhizobium & Nostoc* inoculation on root infection and nitrogen incorporation in wheat. *Can. J. Microbiol.* 29: 869-881.
- Chalk, P.M. (1991). The contribution of associative and symbiotic nitrogen fixation to the

nitrogen nutrition of non-legumes. *Plant Soil.* **132**: 29-39.

- Chen, T.W.; Xie Y.X. and Chen, W.H. (1991). Nitrogenase activity of *Azorhizobium* in the induced wheat nodules. *Nature Journal* (*Chinese*). 14: 268-272.
- Christiansen-Weniger, C. (1996). Endophytic establishment of *Azorhizobium caulinodans* through auxin- induced root tumors of rice. *Biol. Fertil. Soils*, **21**: 293-302.
- Cocking, E.C.; Srivastava, J.S.; Cook, J.M., Kothari, S.L. and Davey, M.R. (1994). Studies on nodulation of maize, wheat, rice and oilseed rape: interactions of Rhizobia with emerging lateral roots. *In:* Biological Nitrogen Fixation- Novel Associations with Non-legume Crops (Eds. N. Yunfu, I.R. Kennedy and C. Tingwie). Qingdao Ocean University Press, Qingdao, China: 53-58.
- Elanchezhian, R. and Panwar, J.D.S. (1997). Effect of 2,4-D and *Azospirillum brasilense* on nitrogen fixation, Photosynthesis and

Journal of Plant Development Sciences Vol.3 (1 & 2): 19-30. 2011

grain yield in wheat. J. Agron. Crop Sci., 178: 129-133.

- **El-Shahed, A.M.** (2005). Interaction of 2, 4-D with a nitrogen fixing *Nostoc* associated with wheat plants. (Bull. Fac. Sci., Assiut Univ.).
- Gantar, M. (2000). Co-cultivation of nitrogen fixing cyano-bacterium *Nostoc* spp. strain 2S9B and wheat callus. *Symbiosis*, **29**(1): 1-18.
- Gopalaswamy, G. and Kannaiyan, S. (2000). The xylem of rice is colonized by Azorhizobium caulinodans. Proc. R. Soc. London, Ser. B. 267: 103–107.
- Kennedy, I.R.; Sriskandarajah, S.; Yu, D.; Nie, Y.F. and Tchan, Y.T. (1991). C₂H₂ reducing *para*-nodules in wheat. Effects of growth regulators and colchicines. *Proc.* 9th *Aust. Nitrogen Fixn. Conf.* **9**: 78-79.
- Ladha, J.K.; Garcia, M.; Miyan, S.; Padre, A.T. and Watanabe, I. (1989). Survival of *Azorhizobium caulinodans* in the soil rhizosphere of wetland rice under Sesbania rostrata-rice rotation. *Appl. Environ. Microbiol.* 55: 454-460.
- Panwar, J.D.S.; Pandey, M. and Abrol, Y.P. (1990). Effect of Azorhizobium caulinodans on photosynthesis, transpiration and yield of wheat under low fertility conditions. *Indian* J. Plant Physiol. 33(3): 185-189.

- Ridge, R.W.; Bender, G.L. and Rolfe, B.G. (1992). Nodule like structures induced on the roots of wheat seedlings by the addition of synthetic auxin 2,4-D and the effects of microorganisms. *Aust. J. Plant Physiol.* **19**: 481-492.
- Rolfe, B.G. and Bender, G.L. (1990). Evolving a *Rhizobium* for non legume nodulation. *In* 'Nitrogen fixation: Achievements & Objectives'. Ed. Gresshoff P., Roth J., Stacey G. and Newton W., Chapman & Hall, New York: 779-780.
- Saikia, S.P.; Jain, V. and Srivastava, G. C. (2003). Effect of Azospirillum and Azorhizobium on maize yield. Indian J. Plant Physiol. Spec. Issue: 539–544.
- Webster, G.; Jain, V.; Davey, M.R.; Gouch, C.; Vasse, J.; Denarie, J. and Cocking E.C. (1998). The flavonoids naringenin stimulates the intracellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ. 21: 373–383.
- Yu, D. and Kennedy, I.R. (1995). Nitrogenase activity (C_2H_2 reduction) of *Azorhizobium* in 2,4-D induced root structures of wheat. *Soil Biol. Biochem.* 27: 459-462.