PHYSICO-CHEMICAL PROPERTIES OF VERTISOL AT DIFFERENT STAGES OF TRANSPLANTED RICE AS INFLUENCED BY LONG TERM APPLICATION OF FERTILIZERS AND MANURE UNDER CHHATTISGARH CONDITION

Rakesh Kumar Bhagat¹, Gourav Kumar Jatav² and Devendra Kumar Dewangan³

¹Department of Soil Science and Agricultural Science, Indira Gandhi Krishi Vishwavidyalaya, Raipur-492012

²Department of Soil Science and Agricultural Science,IAS, BHU, Varanasi-221005 ³Department of Agronomy, Indira Gandhi Krishi Vishwavidyalaya, Raipur-492012 Email: gouravjatav143@gmail.com

Abstract: A field study was carried out during *Kharif* season of 2010-11 at the Research and Instructional Farm of Indira Gandhi Krishi Vishwavidyalaya (IGKV), Raipur. Experiment was conducted to examine the "Physico-chemical properties of *vertisol* at different stages of transplanted rice as influenced by long term application of fertilizers and manure under chhattisgarh condition". The experiment was carried out in randomized block design with 4 replications having treatments: T_1 (Control without fertilizer), T_2 (100% NPK), T_3 (100% N alone), T_4 (100%NPK+FYM), and T_5 (50%NPK+Green manure). A medium duration high yielding paddy variety "Mahamaya" was taken as crop. The soil pH and EC decreased in T_3 (100% N alone) treatment. However, it remained constant in T_2 (100%NPK), T_4 (100%NPK+FYM), and T_5 (50%NPK+GM). The organic carbon content under treatment T_4 (100%NPK+FYM) was found to be significantly higher in all the growth stages when compared with control. The soil moisture was also found higher in under treatment T_5 (50%NPK+GM). The texture of the soil under study was estimated to be sand (20.40%), silt (35.30%) and clay (45.0%), respectively.

Keyword: Long Term, Rice, Different Stage, Physic Chemical Properties

REFERENCES

Ayoub, A.T. (1999). Fertilizer and environment. *Nutr. Cycl.Agroecosys.* 55: 117-121.

Bhakiyathu, B., Saliha, S. Krishnakumar and Natarajan, S.K. (2005). Responce of Rice crop to organic manuring in high pH soil. *Asian Journal of Plant Sciences*. **4**(5): 524-526.

Bibhuti, B. and Dhkar, M. S. (2011). Rhizosphere microbial population and physico-chemical properties as affected by organic and inorganic farming practices. *American Eurasian Journal Agriculture & Environment Science*. **10** (2):140-150.

Campbell, C. A., Mconkey, B.G., Zentner, R.P., Selles, F.and Curtin, D. (1996). Tillage and crop rotation effects on soil organic carbon and nitrogen in a coarse textured typic haploborrol in South Western Saskatchewan. – *Soil Till. Res.* 37: 3-14.

Ghosh, B.C. and Bhat, R. (1998). Environmental hazards of nitrogen loading in wetland rice fields. *Environ. Pollut.* 102: 123-126.

Gregorich, E.G., Carter, M.R., Angers, D.A., Monreal, C.M. and Ellert, B.H. (1994). Towards a minimum dataset to assess soil organic matter quality in agricultural soils. *Can. J. Soil Sci.* **74**: 367-385.

Grewal, K. S., Singh Devendar, Mehta, S.C., and Karwasra S.P.S. (1999). Effect of long term fertilizer application on physico –chemical properties of soil. *JISS.* **47**(3): 538-541.

Hossain, M. and Singh, V.P. (2000). Fertilizer use in Asian agriculture: implications for sustaining food security and the

environment. Nutr. Cycl. Agroecosys. 57:155-169.

Kang, G.S., Beri, V., Sidhu, B.S. and Rupela, O.P. (2005). A new index to assess soil quality and sustainability of wheat-based cropping system. *Biol. Fertil. Soils* **49**:389-398.

Magdoff, F., Lanyon, L. and Liebhardt, B. (1997). Nutrient cycling, transformation and flow implication for a more sustainable agriculture. *Adv. Agron.*, **60**: 1-73

Mahajan, S., Kanwar, S. S, Kumari, P. and Sharma, S. P. (2007). Long-term effect of mineralfertilizers and amendments on microbial dynamics in an *Alfisol* of Western Himalayas. *J. of Microbio.*47:86-89.

Pieters, **A.J.** (2005). Green Manuring: Principles and Practice. Agrobios, Jodhpur. 356pp.

Rosegrant, M.W. and Roumasset, J.A. (1987). Economic feasibility of green manure in rice-

based cropping systems. In: Green Manure in Rice Farming: Proc. Symp. Sustainable Agriculture-The Role Green Manures Crops in Rice Farming Systems, IRRI, Manila, Philippines, May 25-29, 1988; pp.11-27.

Shukla, B.D., Misra, A.K. and Gupta, R.K. (1998). Application of nitrogen in production and post-production systems of agriculture and its effect on environment in India. *Environ. Pollut.* 102: 115-122

Singh, R.B. (2000). Environmental consequences of agricultural development: a case study for the Green Revolution State of Haryana, India. *Agr. Ecosys. Environ.* 82: 97-103.

Singh, Y.V., Singh, B. V., Pabbi, S. and Singh, P. K. (2007). Impact of organic farming on yield and quality of basmati rice and soil properties.

Zhang, J. Qin., J. Yao., W. Bi., L. Lai., T. and Yu., X. (2009). Effect of long- term application of manure and mineral fertilizers on nitrogen mineralization and microbial biomass in paddy soil during rice growth stages. *Plant Soil Environ.* **55**(3): 101- 109.