FIELD SCREENING OF DIFFERENT VARIETIES OF TOMATO AGAINST FRUIT BORER, HELICOVERPA ARMIGERA (HUBNER)

Laxman Singh, P.K. Bhagat, G.P. Painkra* and K.L. Painkra

Department of Entomology, IGKV, Raj Mohini Devi College of Agriculture and Research Station, Ambikapur, Surguja 497001 (Chhattisgarh) India Email: <u>laxman.singh.lucky1991@gmail.com</u>

Received-12.07.2017, Revised-17.08.2017

Abstract: A field experiment was undertaken at research farm of Raj Mohini Devi College of Agriculture and Research Station Ambikapur, Surguja of Indira Gandhi Krishi Vishwavidyalaya Raipur (Chhattisgarh) during 2016-17 on twelve tomato varieties on fruit borer, *Helicoverpa armigera* (Hub.). Tomato varieties *viz.* JK Ratan, JK. 25, JK Nandni, prabhav, Nirmal 2530, N.S. 962, NS 592, Siddharth, Amrita, Bhagya, Kapila and Pusa-Ruby were tested for resistance against *Helicoverpa armigera* infestation under field conditions. The varieties JK 25 and Prabhav had minimum fruit weight loss (1.57% and 3.26%) as well as minimum number of infested fruits (1.85% and 3.79%) respectively by the *Helicoverpa armigera*. These variety also had minimum *Halicoverpa armigera* larval population, i.e. 0.14, and 0.22 larvae/plant, respectively. The variety Pusa-Ruby and Amrita had maximum loss in fruit weight (30.41% and 21.67%) as well as maximum number of infested fruit (30.85% and 23.28%) with larval population of 1.05 and 0.68 larvae/plant. Pusa-Ruby was categorized as susceptible genotypes with fruit infestation (30.85%) and larval population per plant (1.05%). Variety Bhagya, JK Ratan, Siddharth, NS 592, and Amrita (20.21%, 20.51%, 21.10%, 21.44% and23.28%) was categorized as moderately resistant. Variety JK 25 and Prabhav (1.85% and 3.79%) and declared as resistant variety to tomato fruit borer.

Keywords: Screening, Tomato varieties, Fruit borer, Vegitable

REFRENCECES

Anonymous (1997). FAO production year books, basis Data Unit. Statistics Division, FAO, ROME Italy, 51; 125-127.

Anonymous (1976). Agricultural Research Service. ARS. Nalt. Heliothis Planning Conf. New Orleans. La, US. Department of Agriculture. Washington D.C. p. 36

Banerjee, M.K. and Kalloo (1989). Role of phenols in resistant to tomato leaf curl virus, *Fusarium wilt* and fruit borer in *Lycopersicon*. *Current Sci.* 58: 575-576.

Bazzaz, F.A., Chiarello, N.R., Coley, P.D. and Pitelka, L.F. (1987). Allocating resources to reproduction and defense. *Biosci.* 37:58-67.

Choudhury, B. (1979). Vegetable (6th Revised Edn.) the Directors National BookTrust New Delhi, India, pp;45.

Gc, Y.D., Pandey, R.R. and Bhoosal, D.L. (1997). Management of tomato fruit worm *Helicoverpa armigera* during 1996/97. *Lumle* Agric. Research centre. No.97-46 10 pp.

Goncalves Alvin, S.J., Collevatti, R.G. and Fernandes, G.W. (2004). Effects of genetic variability and habitat of *Qualea parviflora* (Vochysiacea) on herbivory by free feeding and gall farming insects. *Ann. Bot.* 94:259-268.

Johnson, B. (1956). The influence on aphids of the glandular hairs on tomato plants. *Plant Pathol.* 5:131-132.

Johnson, S.J., King, E.G. and Jr. Bradlay, J.R. (1986). Theory and tactics of *Heliothis* population

*Corresponding Author

management. I. Cultural and biological control. South.Coop. Ser. Bull. 316:161.

Kashyap, R.K. and Verma, A.N. (1987). Factors imparting resistance to fruit damage by *Helicoverpa armigera* (Hubner) in some tomato phenotypes. *Insect Sci. Applic.*, 8: 111-114.

Khanam, U.K.S., Hossain, M., Ahmad, N., Uddin, M.M. and Hussain, M.S. (2003). Varietal screening of tomato to tomato fruit borer, *Helicoverpa armigera* (Hub.) and associated tomato plant characters. *Pak. J. Biol. Sci.* 6: 412-413.

Lukefahr, M.J. (1982). A review of the problems, progress and prospects for host plant resistance to *Heliothis* spp. p.223-231. In: W. Reed and V. Kumble (eds.). International Workshop on *Heliothis* Management. ICRISAT, India.

Lukefahr, M.J., Houghtaling, J.E. and Graham, H.M. (1971). Supression of *Heliothis* population with glabrous cotton stains. *J. Econ. Entomol.* 64:486-488.

Minkenberg, O.P.J.M. and Ottenheim, J.G.W. (1990). Effects of leaf nitrogen content of tomato plants on preference and performance of a leaf mining fly. *Oceologia* 83: 291-298.

Mishra, P.N., Singh, Y.V. and Nautiyal, M.C. (1988). Screening of brinjal varieties for resistance to shoot and fruit borer, *Leucinodes orbonalis* Guen. (Lepidoptera: Pyralidae). *South Ind. Hort.* 36:182-88. Pareek, P.L. and Bhargava, M.C. (2003). Estimation of avoidable losses in vegetables caused by borers under semi arid condition of Rajasthan. *Insect Environ.*, **9**: 59-60.

Journal of Plant Development Sciences Vol. 9 (8): 839-841. 2017

Rafiq, M., Ghaffar, A. and Arshad, M. (2008). Population dynamics of whitefly (*Bemisia tabaci*) on cultivated crop hosts and their role in regulating its carryover to cotton. *Int. J. Agric. Biol.* 9:68-70.

Selvanarayanan, V. and Narayanasamy, P. (2006). Factors of resistance in tomato accessions against the fruit worm, *Helicoverpa armigera* (Hubner). *Crop Protec.* 25:1075-1079.

Talekar, N.S., Open, R.T. and Hanson, P. (2006). *Helicoverpa armigera* management: a review of AVRDC's research on host plant resistence in tomato. *Crop Protec.*, 5: 461-467.

Wakil, W., Ashfaq, M., Ghazanfar, M.U., Afzal, M. and Riasat, T. (2009). Integrated management of *Helicoverpa armigera* in chickpea in rainfed areas of Punjab, Pakistan. *Phytoparasitica* 37:415-420.