COMPARATIVE EVALUATION OF ENTOMOPATHOGENIC FUNGI AND CHEMICAL INSECTICIDES AGAINST WHITE GRUB (*HOLOTRICHIA* SP.) IN SUGARCANE

Reshu¹*, Shashi Mala², Laxmikant³, Rajiv Kumar Sirohi¹ and Satendra Kumar⁴

 ¹Krishi Vigyan Kendra, Bulandshahr, Uttar Pradesh-20300, ²IIMT, College, Aligarh, Uttar Pradesh-202001 and ³Krishi Vigyan Kendra, Rampur, Uttar Pradesh-244901
⁴Department of Soil Science, S.V.P. University of Ag. & Tech. Meerut (U.P.) Email: reshu_258@rediffmail.com

Received-06.05.2017, Revised-20.05.2017

Abstract: Field trials were conducted in sugarcane crop for management of white grub (*Holotrichia* sp.) using talc based formulations of entomopathogenic fungi *Metarhizium anisopliae* and *Beauveria bassiana* and chemical insecticides namely carbofuran 3G, Chloropyriphos 20 EC and Fipronil 40% + Imidaclorpid 40% WG. Pretreatment count of white grub larvae was taken for every individual microplot. Fipronil 40% + Imidaclorpid 40% WG @ 375 gm/ha proved to be the best treatment against white grub and provided up to 100% control of white grub. Chloropyriphos was second most effective treatment and checked 100% soil population of white grub followed by *M. anisopliae* which resulted in 80.97% decrease in soil population of white grub. After economic analysis *M. anisopliae* appeared to be significantly cost effective as compare to Fipronil 40% + Imidaclorpid 40% WG. Net return of Rs. 31153/ha was recorded in this treatment whereas, net return of Rs. 27816/ha was recorded in case of *M. anisopliae*.

Keywords: White grub, *M. anisopliae*, *B. bassiana*, Biological control, Chemical control

REFERENCES

Agarwal, G.P. and Rajak, R.C. (1985). Entomopathogenic fungi in biological control of insect pests. *Trends Pl. Res.*, pp. 34-42.

Bhagat, R.M., Gupta, R.B.L. and Yadav, C.P.S. (2003). Field efficacy of two entomopathogenic fungal formulations against white grub in Himachal Pradesh. *Indian J. Entomol.*, 65(1): 76-81.

David. H., Nadagopal, V. And Anatha Narayana, K. (1986). Recent studies on the control of white grubs, *Holotrichia serrata* Blench infesting sugarcane. *J. Soil Biol. Ecol.* 6: 117-127.

Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agricultural Research, 2nd edition John Wiley and Sons, New York. 680.

Gupta, R.B.L., Sharma, S. and Yadav, C.P.S. (2003). Effect of moisture regimes on efficacy of *M. anisopliae* against white grub (*Holotrichia consanguinea*). *Indian J. Entomol.* 65(1): 38-42.

Hu, G. and St. Leger, R.J. (2002). Field studies using recombinant mycoinsecticide (*Metarhizium anisopliae*) reveal that it is rhizosphere competent. *Applied Env. Microbiol.*, 68: 6383-6387.

Keller, S. (1998). Use of fungi for pest control in sustainable agriculture. *Phytoprotection*, 79 (Suppl): 56-60.

Kulye, M.S. and Pokharkar, D.S. (2009). Evaluation of two species of entomopathogenic fungi against white grub *Holotrichia consanguinea* (Blanchard) infesting potato in Maharashtra, India. *J. Biological Cont.*, 23(1): 1-4.

Mane, P.B. and Mohite, P.B. (2014). Bioefficacy of different species of entomopathogenic fungi against white grub, *Leucopholis lepidophora* (Blanchard)

infesting sugarcane in Maharashtra. Asian J. Bio. Sci., 9(2): 234-237.

Mane, P.B. and Mohite, P.B. (2014). Efficacy of newer molecules of insecticides against white grub in sugarcane. *Asian J. Bio. Sci.*, 9(2): 173-177.

Manisegaran, S.M., Lakshmi, S.M. and Srimohanapriya (2011). Field evaluation of *Metarhizium anisopliae* (Metschnikoff) Sorokin against *Holotrichia serrata* (Blench) in sugarcane. J. *Biopesticides*, 4(2): 190-193.

Milner, R.J., Rogers, D.J., MCRac, C.M.N., Huppartz, R.J. and Brier, H. (1993). Preliminary evaluation of the use of *Metarhizium anisopliae* as a microbial for control of peanut scarabs. In: *Pest control in sustainable agriculture*. Melbourn, Australia, CSIRO, pp. 235-255.

Mishra, P.N. and Singh, M.P. (1999). Determination of predominant species of white grubs in Garhwal region of Uttar Pradesh Hills (India). *J. Entomol. Res.*, 23: 12-19.

Mohalkar, P.R., Patil, A.S., Shwale, B.S. and Hapse, D.G. (1997). White grub (*Holotrichia serrata* F.) The sixth joint convention of S.T.A.I., S.I.S.T.A. and D.S.T.A. pp.67-77.

Mohoideen,S., Zaki, F.A., Munshi, N.A., Jan, A. and Sultan, P. (2006). Evaluation of some entomopathogenic fungal isolates from Kashmir for the biocontrol of white grubs infesting turf grass in golf course. *J. Biological Cont.*, 20(1): 45-50.

Panse, V.G. and Sukhatme, P.E. (1967). Statistical methods for agricultutal workers, ICAR, New Delhi. 328.

Patel, B.A., Patel, I.S., Patel, P.S. and Patel, J.K. (2010). Efficacy of newer insecticidal formulations

*Corresponding Author

Journal of Plant Development Sciences Vol. 9 (5): 477-481. 2017

applied as soil drenching against white grubs and termite in groundnut. *Pestology.*, 34(7): 55-57.

Patil, S.M., Chauggle, C.B., Mohalkar, P.K., Ajri, D.S. and Patil, B.R. (1986). A new species of white grub, *L. lepidoptera* Blanchard infesting sugarcane in Kolhapur district. In: Abstract national seminar on pests and diseases management and national disorders in sugarcane, DSI, Pune, M.S. (India).

Robertson, L.N., Kettle, C.G. and Bakker, P. (1997). Field evaluation of *Metarhizium anisopliae* for control of greyback cane grub (*Dermolepida*

albohirtum) in north Queensland sugarcane Broc. *Aust. Soci. Sugarcane Technol.*, 19: 111-117.

Sharma, Shashi and Gupta, R.B.L. (1998). Compatibility of *Beauveria brongniartii* with pesticides and organic manures. *Pesticide Res. J.*, 10(2): 251-253.

Yubak Dhoj, G.C. (2006). White grubs (Coleoptra: Scarabaeidae) associated with Nepalese agriculture and their control with the indigenous entomopathogenic fungus *Metarhizium anisopliae* (Metsch.) Sorokin, dissertation, 1-282.