CRITICAL LIMIT OF AVAILABLE ZINC FOR WHEAT IN SOILS OF SUB-HUMID SOUTHERN ZONE (IV- B) OF RAJASTHAN

R.S. Meena^{1*}, A.K. Mathur² and S.K. Sharma²

1 National Bureau of Soil Survey & Land Use Planning (ICAR), Regional Centre, Udaipur

2 Department of Agricultural Chemistry & Soil Science, Rajasthan College of Agriculture, MPUAT-

Udaipur-313001

¹* corresponding author E mail: mramswaroop@gmail.com

Absract : A pot culture experiment was conducted during the year 2006-07 to assess the critical limit of zinc in soils as well as in wheat plant with eighteen alkaline soils collected from different sites of Zone (IV-b) of Rajasthan. The DTPA-extractable Zn in these soils was found positively correlated with organic carbon, clay and per cent dry matter yield of wheat. A significant negative correlation was observed between pH, sand, calcium carbonate (CaCO₃) and electrical conductivity (EC). The critical limits of available Zn for soil and plant were worked out to 0.63 mg kg⁻¹ and 38.98 mg kg⁻¹, respectively. Application of 10 mg Zn kg⁻¹ soil recorded maximum mean dry matter yield of wheat i.e. 17.59 g pot⁻¹. Bray's per cent yield (Wheat) versus DTPA-zinc in soil was found to be 0.58 mg kg⁻¹ by graphical method and 0.63 mg kg⁻¹ by statistical method.

Keywords : Critical limit, Zinc, Bray's per cent yield, Alkaline soil

REFERENCES

Agrawal, S.C., Mehrotra, N.K. and Rathore, R.K.S. (1977). Wheat response of zinc and its critical levels in soils of Uttar Pradesh. *Journal of Indian Society of Soil Science* **25** : 186-192

Alloway, B.J. (2004). Zinc in soils and crop nutrition. IZA Publications. International Zinc Association, Brussels. Pp 1-116.

Aneg, Singh., Lal, K., Singh, S.B. and Singh, A. (2001). DTPA-extractable Zn, Fe, Mn and Cu in sugarcane growing soils. *Journal of Sugarcane Technology* **16**: 48-51.

Cakmak, M., Kalayci, H., Ekiz, H.J., Braun, Y., Kilinc, A. and Yilmaz (1999). Zinc deficiency as a practical problem in plant and human nutrition in Turkey. A NATO – science for stability project. *Field Crop Research* 60 : 175-188.

Cate, R.B. Jr and Nelson, L.A. (1971). A simple statistical procedure for partitioning soil test correlation data into two classes. *Soil Science Society of American Journal* **35** : 658-660.

Hotz, C. and Brown, K.H. (2004). Assessment of the risk of zinc deficiency in populations and options for its control. *Food Nutrition Bulletin.* **25** : 94-204.

Piper, C.S. (1950). Soil and Plant Analysis. Inter Science Publisher, Inc. New York.

Jackson, M.L. (1973). Soil Chemical Analysis. Prentice Hall of India Ltd., New Delhi pp 38-226.

Lindsay, W.L. and Norvel, W.A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. *Soil Science Society of America Proceedings* 42 : 62-68.

Potarzycki, J. and Grzebisz, (2009). Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environment. 55 (12): 519-527.

Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. *USDA, Hand Book No* **60** : 101.

Rupa, T.R., Ch. Srinivasa Roa, Subba Roa., A. and Singh M. (2003). Effects of farmyard manure and phosphorus on zinc transformations and phyto-

availability in two alfisols. *Bioresource Technology* **87**: 279-288.

Sakal, R., Singh, A.P., Sinha, H. and Thakur, K.N. (1981). Evaluation of critical concentration of zinc in rice and wheat grown in tarai soils. *Journal of Indian Society of Soil Science* **29** : 107-109.

Schollenberger, C.J. and Simon, R.H. (1945). Determination of exchange capacity and exchangeable bases in soil ammonium acetate method. *Soil Science* **59** : 13-24.

Shaheen Riffat., Samim, M.K. and Mahmud, R. (2007). Effect of zinc on yield and zinc uptake by wheat on some soils of Bangladesh. *Journal of Soil. Nature* **1**: 7-14.

Sharma, S.K. and Lal, F. (1992). Status of DTPAextractable zinc in soils of humid southern zone of Rajasthan. *Journal of the Indian Society of Soil Science* 40 : 393-394.

Sharma, S.K. (1988). Effect of zinc application at different levels of nitrogen and phosphorus on the yield and nutrient uptake by wheat. Ph. D. Thesis, Rajasthan Agriculture University, Bikaner.

Singh, A. (1996). Response of maize to zinc application at various nitrogen levels. M. Sc. Thesis, Rajasthan Agriculture University, Bikaner.

Takkar, P.N. Chhibba, I.M. and Mehta, S.K. (1989). Twenty years of co-ordinated research on micronutrients in soils and plants. Indian Institute of Soil Science, Bhopal.

Zeidan, M.S., Manal, F., Mohammed and

Hamouda, H.A. (2010). Effect of foliar fertilization of Fe, Mn and Zn on wheat yield and quality in low sandy soil fertility. *World Journal of Agricultural Sciences* **6**: 696-699.

Walkley, A. and Black, I.A. (1934). An examination of the Degtjareff method for determinating soil organic matter and a proposed modification of the chromic acid titration method. *Soil Science* **34**, 29-38.

White, J.G. and Zasoski, R.J. (1999). Mapping soil micronutrients. *Field Crop Research*. **60** : 11-26 World Health Organization (2002) The World Health Organization Report 2002 Geneva: WHO.