EFFECT OF INTEGRATED NUTRIENT SUPPLY AND INTERCROPPING OF FODDER CROPS ON PHYSICAL PROPERTIES OF SOIL IN FODDER MAIZE + LEGUMES INTERCROPPING SYSTEM

R. Tigga* and G.K. Das

Department of Agronomy, Indira Gandhi Agricultural University, Raipur (CG) 497001

Received-29.08.2016, Revised-15.09.2016

Abstract : A field experiment was conducted during the winter seasons of 2008 -09 and 2009-10 at Raipur Chhattisgarh, to find out the effect of integrated nutrient supply and intercropping of fodder crops on physical properties of soil in fodder maize + legumes intercropping system. Integrated nutrient supply with application of 50 % RFD + 10 tonnes $FYM + ZnSO_4$ was recorded significantly lowest value of soil bulk density and higher value of total porosity and water holding capacity. Intercropping of maize + lucerne (1:1) proved most efficient system resulting significantly lower value of bulk density but at par with Maize + Berseem (1:1) and higher value of total porosity and water holding capacity as compared to other intercropping system.

Keywords: Integrated nutrient supply, Maize + fodder legumes, Water holding capacity

REFERENCES

Balyan, J.S. and Seth, J. (1997). Effect of cropping systems on maize production and their residual effect on succeeding wheat. *Indian Journal of Agronomy*, **34**(1): 57-60.

Black, G.R. and Hartge, K.H. (1986). Bulk density. In: A. Klute(Ed.). Methods of Soil Analysis. Part I. Physical and Mineralogical Methods. 2nd. Ed., Agronomy No. 9 (part I). ASA-SSSA. Madison, Wisconsin, USA, 363-375.

Bodmen, G.E. (1942). Monographs for rapid calculation of soil density, water content and total porosity relationship. *Journal of American Society of Agronomy* **34** (10): 883-893.

Cheng, W. and Coleman, D.C. (1990). The effect of living roots on soil organic matter decomposition. *Soil Biol. Biochem.*, 22: 781–784.

Fan, A-nan, Chen Xiang-wei and Li Zhi-min (2006). Effects of intercropping systems of trees with soybean on soil physico-chemical properties in juvenile plantations. *J. For. Res.*, 17: 226–30.

Gumaste, S.K. (1981). Studies on intercropping of Lucerne with hybrid cotton (Varalaxmi) and hybrid sorghum (CSH-5). Ph.D. Thesis, *Uni. Agric. Sci.*, Bangalore (India).

Khurshid, K., Iqbal, M., Arif, M.S. and Nawaz, A. (2006). Effect of tillage and mulch on soil physical properties, growth of maize. *Int. J. Agri. Biol.*, 8: 593–6.

Nambiar, K.K.M. and Abrol, I.P. (1989). Long term fertilizer experiment in India: An overview, *Fertilizer News*, 34(4): 11-20, 26.

Parashuram, Chandravanshi, K. Sudhir, K. Shrikanth and Siddaramappa, R. (1999). Effect of long tern fertilization and cropping on physical properties of an Alfisol. *Mysore J. Agric. Sci.*, 13: 115-118.

Piper, C.S. (1950). Soil and plant analysis. Inter-Science Publication Inc. New Work

Prasad, P.R. Singh, H.K., Roy, H.K. and Singh, H. (1983). Effect of fertilizers, lime and manures on some physical and chemical properties of red loam soil under multiple cropping. *J. Ind. Soc. soil. Sci.*, 31: 601-603.

Singh, C. (1983). Modern techniques of raising field crops.Pataudi House, Darya Ganj, New Delhi, pp 389-401.

Six, J., Ellior, E.T., Paustian, K. And Doran, J.W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. *Soil Science Society America J.*, 62: 367 - 1377.

^{*}Corresponding Author