MANAGEMENT STUDIES ON TOMATO DAMPING-OFF WITH NATIVE ANTAGONISTS

J. Sailaja Rani,* M. Reddi Kumar, N.P. Eswara Reddy, T. Uma Maheswari, Y. Kavya and C. Ramesh

Deptt. of Plant Pathology, Agricultural College, Mahanandi Acharya N.G.Ranga Agrl. University (A.P.) Email: <u>pathsailaja@gmail.com</u>

Received-12.06.2015, Revised-20.06.2015

Abstract: Plant disease management with bio agents is a non chemical and environmental safe method in agriculture. Tomato damping-off caused by *Pythium aphanidermatum* (Edson) Fitz. is one of the most dreadful diseases. Six isolates of *P. aphanidermatum* were collected from tomato nurseries of different geographical areas in Andhra Pradesh and designated as CTR₁, CTR₂, KDP₁, KDP₂, KNL₁ and KNL₂. Native *Trichoderma harzianum* and *Pseudomonas fluorescens* were isolated from tomato rhizosphere using selective media. These two native bioagents were identified upto species level based on morphological characters. Among the two native antagonists, *T. harzianum* recorded maximum per cent inhibition on all isolates of *P. aphanidermatum*. Maximum inhibition was observed in CTR₂ when *T. harzianum* was used while *P. fluorescens* recorded maximum inhibition on KDP₂ *in vitro. In vivo* studies revealed that seed treatment with combination of *T. harzianum* and *P. fluorescens* was found to be effective in controlling pre and post-emergence damping-off.

Keywords: T. harzianum; P. fluorescens; Tomato Damping - off; P. aphanidermatum

REFERENCES

Baker, K.F. and Snyder, W.C. (Eds.) (1965). Ecology of soil-borne plant pathogens. Prelude to biological control. University of California Press, Berkely, pp. 571.

Barnett, H.H. and Hunter, B.B. (1972). Illustrated genera of imperfect fungi. Burgess Publishing Company, Minnesota.

Bisht, G.S., Chandrajoshi, Bisht, Deepa and Kulbe, R.D. (1997). Distribution and pathogenicity of *Pythium* spp. from tomato. Indian Phytopathology 50(1): 83-97.

Elad, Y. and Chet, I. (1983). Improved selective media for isolation of *Trichoderma* spp. Phytoparasitica 11: 55-58.

Govindappa, M.M. and Grewal, J.S. (1965). Efficacy of different fungicides in controlling damping-off of tomato. Indian Journal of Agricultural Science 35: 210-215.

Holt, J.G., Kreeg, N.R., Sneath, P.H., Stanley, J.T. and Williams, S.T. (2000). Bergey's manual of determinative bacteriology. Lippincott williams and Wilkins, Maryland, USA.

Johnson, L.F. and Curl, E.A. (1972). Methods of research on the ecology of soil borne plant pathogens. Burgess Publishing Company, Minnesota, pp.6-8.

Khara, H.S. and Hadwan, H.A. (1990). *In vitro* studies on antagonism of *Trichoderma* spp. against *Rhizoctonia solani*. The causal agent of damping-off of tomato. Plant Disease Research 5: 144-147.

Krishna moorthy, A.S. and Bhaskaran, R. (1990). Biological control of damping-off disease of tomato caused by *Pythium indicum*- Balakrishnan. Journal of Biological control 4: 52-54. **Muthamilan, M.** (1989). Biological control of root rot of groundnut (*Arachis hypogaea*) caused by *Sclerotium rolfsii* Sacc. M.Sc (Ag.) Thesis, Tamil Nadu Agricultural University, Coimbatore, pp.97.

Ongena, M., Daay, F., Jacques, P., Thonart, P., Benhamou, N., Paulitz, T.C., Cornelis, P., Koedam, N.M. and Belanger, R.R. (1999). Protection of cucumber against *Pythium* root rot by fluorescent pseudomonads : predominant role of induced resistance over siderophores and antibiotics. Plant Pathology 48: 66-76.

Pratibha Sharma, Sain, S.K., James, S. (2003). Compatability study of *Trichoderma* isolates with fungicides against damping-off of cauliflower and tomato caused by *Pythium aphanidermatum*. Pesticide Research Journal 15(2): 133-138.

Rahman, M.A., Vijaya, M. and Chiranjeevi, Ch. (2003). Performance of soil solarization, captan and biocontrol agents in management of damping-off disease in solanaceous vegetable nursery. Indian Journal of Plant Protection 31(2): 71-75.

Ramamoorthy, V., Raghuchander, T. and Samiyappan, R. (2002). Enhancing resistance of tomato and hot pepper to *Pythium* diseases by seed treatment with fluorescent Pseudomonads. European Journal of Plant Pathology 108: 429-441.

Sawant, I.S. and Mukhopadhyay, A.N. (1990). Control of damping-off of sugarbeet of seed treatment with Metalaxyl. Indian Phytopathology 43(3): 408-413.

Selvarajan, R. (1990). Biological control of chickpea root rot caused by *Fusarium solani* (Mart.) Sacc. and *Macrophomina phaseolina*(Rassj) Goid. M.Sc (Ag.) Thesis, Tamil Nadu Agricultural University, Coimbatore, pp.158.

*Corresponding Author

Subramanian, C.V. (1971). Hyphomycetes an account of Indian species except cercospora. Indian Council of Agricultural Research, New Delhi.

Syamasundar Reddy, G. (1999). Interaction of *Meloidogyne incognita* and *Pythium aphanidermatum* on tomato (*Lycopersion esculentum* Mill.) and their management. M.Sc. (Ag.) Thesis submitted to Acharya N.G. Ranga Agricultural University, Hyderabad (A.P.).

Turner, J.J. and Backman, P.A. (1991). Factors relating to peanut yield increases after seed treatment with *Bacillus subtilis*. Plant Disease 75: 347-353.

Vidhyasekaran, P., Sethuraman, K., Rajappan and Vasumathi, K. (1997). Powder formulations of *Pseudomonas fluorescens* to control pigeonpea wilt. Biological Control 8: 166-171.

Vijaya Krishna Kumar, K. (1997). Integrated approach for management of damping-off disease in tomato caused by *Pythium aphanidermatum* (Edson) Fitzp. M.Sc (Ag.) Thesis submitted to Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad (A.P).