RESIDUAL EFFECT OF ORGANIC AND INORGANIC NUTRIENT SOURCES ON NUTRIENT UPTAKE AND YIELD OF RAINFED LENTIL

Pankaj Kumar Pankaj1, Gourav Kumar Jatav1, R.P. Singh2, T.K. Singh2 and Nirmal De*3

1Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, BHU, Varanasi, U.P., India-221005
2Department of Agronomy, Institute of Agricultural Sciences, BHU, Varanasi, U.P., India-221005
3Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, BHU, Varanasi, U.P., India-221005

* Email- nirmalde@gmail.com

Abstract: On farm experimental data was recorded during rabi season of 2008 to 2011 at Banaras Hindu University, Varanasi, India in a long term nutrient management experiment in a rainfed rice based system under All India Coordinated Research Project on Dry land Agriculture. The experiment was laid out with six treatments namely, control (no nutrient supplemented), 100% RDF (80-40-30 kg ha\(^{-1}\) N: P: K), 100% N through FYM, 50% N through FYM, 50% RDF + 50% N through FYM and Farmer’s Practice (only 20 kg N ha\(^{-1}\)) applied for Kharif direct seeded rainfed rice crop in an Inceptisol. The residual effect of these treatments on yield and nutrient uptake efficiency was studied on rainfed rabi lentil crop. The experimental findings indicated that crops grown under 100% N through FYM (T1) treatment was significantly superior in increasing grain, stubble yield as well as protein yield of lentil. The conjunctive use of organic and inorganic source of fertilizer significantly induced to release higher concentration of N, P, K and S in the soil available pool thereby increased uptake by lentil plant at harvest. A significantly higher yield and economic return (B: C=0.72) was noted when the crop was grown under 100% N through FYM followed by T3, 50% RDF + 50% N through FYM (B: C=0.62) and T5, 100% RDF (B: C=0.54).

Keywords: Lentil, FYM, nutrient uptake, rainfed

REFERENCES


DFID Plant Sciences Research Programme project R8221 “Promotion of rainfed rabi cropping in rice fallow of eastern India and Nepal phase 2”


Singh, R.B. (2002). The state of food and agriculture in Asia and the Pacific: Challenges and opportunities. IFA/FAO. Paris

