RESPONSE OF OKRA [ABELMOSCHUS ESCULENTUS (L.) MOENCH.] TO INTRA-ROW SPACING IN NORTHERN HILLS OF CHHATTISGARH

Amit Dixit* and Okesh Chandrakar

Department of Horticulture Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.) 492012 Email: amitdixit1872@yahoo.in

Received-07.05.2015, Revised-16.05.2015

Abstract: Field experiments were conducted *Kharif* season, during the years 2010 and 2011 planting seasons at the northern hills of Ambikapur Chhattisgarh, to evaluate the response of 'Arka Anamika' variety of okra to different intra-row spacing and to determine the optimal intra-row spacing that would maximize yield under northern hills conditions. The treatments consisted of three intra-row spacing (35 cm, 30 cm and 25 cm), replicated four times in a randomized complete block design. Results of the study showed that while the tallest okra height was produced from the intra-row spacing of 30 cm, the number of branches per plant, leaf area, pod length, pod diameter, number of pods per plant, pod weight and yield decreased as intra-row spacing reduced. The greatest yield was obtained from the intra-row spacing of 35 cm. The yield produced from the intra-row spacing of 35 cm was significantly (P<0.05) greater by 6.00 and 6.12 tone/ha respectively, in the year 2010 and 2011 compared to that obtained from the intra-row spacing of 30 cm and by 5.00 and 5.10 tone/ha respectively, in the year 2010 and 2011 compared to that produced from the intra-row spacing of 25 cm. The implication of this study showed that to maximize okra yield for variety 'Arka Anamika' the optimal intra-row spacing was found to be 35 cm and could therefore, be recommended for northern hills region of, Ambikapur C.G.

Keywords: Okra, Spacing, Yield, Variety

REFERENCES

Absar, N. and Siddique, M.A. (1992). Influence of plant density on the yield of three varieties of okra *Bangladesh Journal of Agriculture*, 7 (3-4): 15–21.

Anonymous, (2013). India Horticulture Database. National Horticulture Board.

Anonymous (2013). Area, production and Productivity. Directorate Horticulture, Ministry of Agriculture, Government of Chhattisgarh, Raipur (C.G.)

Ekpete, D.M. (2000). Analysis of responses to fertilizer by intercrops. *Nigerian Agricultural Journal*, 13: 96-102.

Ezeakunne, C. O. (2004). Large scale fruit and vegetable production in Nigeria. Extension Bulletin, Ahmadu Bello University, Zaira, 8pp.

Ghanti, P., Sounda, E and Verma, P. K. (1991). Effect of plant spacing on growth and yield of different bhindi varieties. *Environment and Ecology Journal*, 9: 176-179.

Gorachand, M., Malik, O. and Mondal, G. (1990). Growth and yield of bhindi (*Abelmoschus esculentus* L. Moench) as influenced by time of sowing and plant density, *Orissa Journal of Horticulture*, 18: 26–31.

Hossain, M. D., Rahman, M. A., Hoque, M. M. and Salem, M. A. (2001). Year round okra production and economic return as influenced by spacing in Barisal region. *Bangladesh Journal of Agricultural Research*, 25: 319–328.

Iremiren, G. O. and Okiy, D. A. (1999). Effect of spacing on the growth, yield and quality of okra in Southern Nigeria. *Journal of Agricultural Science*, U. K. 106 (1): 12–26.

*Corresponding Author

Jackson, M.L. (1967). *Soil Chemical Analysis*, Prentice Hall of India Pvt. Ltd., New Delhi, pp. 205.

Katung, M. D. (2007). Productivity of okra varieties as influenced by seasonal changes in Northern Nigeria. *Agrobot*. 35 (1): 65–71.

Lee, K. H., Cho, C. Y., Yoon, S. T. and Park, S. K. (2000). The effect of nitrogen fertilizer, plant density and sowing date on the yield of okra. *Korean Journal of Crop Science*. 35(8): 179–183.

Moniruzzaman, M., Uddin, M. Z. and Choudhury, A. K. (2007) Response of okra seed crop to sowing time and plant spacing in South Eastern hilly region of Bangladesh. *Bangladesh Journal of Agricultural Research*, 32(3):393–402.

Owonubi, J. J and Yayock, J. Y. (1981). Climatic limitations to crop production in the savanna region of Nigeria. 1st National Seminar on Green Revolution in Nigeria. Technical and Environmental Perspective Session, 21st September, 1980, 81pp.

Randhawa, G. S. and Pannum, M. S. (2000). The effects of rospacing on the growth and yield of okra. *Punjab Agric University Research Journal*, 6: 320–324.

Rastogi, K. B., Shamma, P. P., Sing, N. P. and Karla, B.N. (2001). Effects of different levels of nitrogen and plant spacing on seed yield of okra. *Vegetable Science*, 14(2): 120-123

Saha, P. K., Aditya, D. K. and Sharfuddin, A. F. M. (2005). Effects of plant spacing and picking interval on the growth and yield of okra cv. Pusa sawani. *Bangladesh Horticulture*, 17: 10–14.).

Sing, K. P., Malik, Y. S., Lal, S. and Pandistha, M. L. (1996). Effects of planting dates and spacing on seed production of okra (*Abelmoschus esculentus* (L)

Moench). *Haryana Journal of Horticultural Science*, 15(3-4):267–271.

Steel, R. G. D. and Torrie, J. H. (1980). Principles and Procedures of Statistics, Mc Graw–Hill, New York.

Usman, S. D. (2001). Seed Production and quality of okra as affected by sowing time. *Seed Research*, 29 (1): 47–51.

Yadev, S. K. and Dhankhar, B,. S. (2005). Performance of Varsha Uphar cultivar of okra as affected by plant spacing. *Vegetable Science*, 26(3): 180–182.

Yamaguchi, M. (1983). World Vegetables. Principles and Nutritive Values. Avi Publishing Company Inc. West Port, Connecticut, pp. 368-37.