CARBON SEQUESTRATION CAPACITY OF DIFFERENT NATURAL WEED FLORA UNDER RAINFED ECOSYSTEM

Adikant Pradhan1, S.S. Rao1, P.S. Kusaro2, S.K. Nag3 and A. Sao4

Email: adi_197753@rediffmail.com
1Dean, S.G. College of Agriculture and Research Station, Jagdalpur
2Scientist, Soil Science, S.G. College of Agriculture and Research Station, Jagdalpur
3Scientist, Economics, S.G. College of Agriculture and Research Station, Jagdalpur
4Scientist, Genetics, S.G. College of Agriculture and Research Station, Jagdalpur

Received-06.12.2015, Revised-13.12.2015

Abstract: A survey was conducted in the region selecting 6 villages to assess the natural floral composition and its dynamics during Kharif and Rabi 2013. Sequestration of carbon due to spatial occurrence of flora affected significantly with attaining biomass by plants. The dry matter includes tillers, leaves and flowering parts are directly proportionate to carbon sequestration capacity leading a higher carbon sequestration as 6.37 g in Spaeranthes indicus Linn, 4.75 g in Heliotropium indicum Linn, 6.03 g in Alternanthera sessile (L.) R.Br., 4.58 g in Malva comendelium (L.) Garcke, 5.18 g in Polygonum hydropiper L. and 4.89 g in Gomphrena celosoides Mart among observed species, which were more than 4 g per plant in nearly 6 months life cycle under natural rainfed ecosystem. Among the narrow leafed flora, Rottboellia exalata L., Isilemna laxum Hack, Echinocloa crusgalli P. Beauv, Aritida ascensionis L., Coix lacryamma-Jobi L., Cyperus deformis L. And Themeda japonica L. stored higher biomass as 3.85, 17.29, 6.65, 4.28, 7.36, 7.41 and 6.65 per plant, respectively over remaining species of terrestrial flora.

Keywords: C-sequestration capacity, Weeds, Plant biomass, Weed ecosystem

REFERENCES


*Corresponding Author