INFLUENCE OF WEATHER PARAMETERS ON PEARL MILLET (*PENNISETUM GLAUCUM* L.) VARIETIES AT ALLAHABAD

S.K. Maurya, S. Nath, S.S. Patra and S. Rout*

School of Forestry & Environment Sam Higginbottom Institute of Agriculture Technology and Sciences, Allahabad-211007 (Uttar Pradesh), INDIA. *Email: srout.forestry@gmail.com

Received-05.12.2015, Revised-11.12.2015

Abstract: A field experiment was conducted during the kharif season 2014 at the research farm of School of Forestry & Environment, Sam Higginbottom Institute of Agriculture Technology and Sciences, Allahabad, to find out influence of weather parameters on pearl millet (*Pennisetum glaucum* L.) varieties under Allahabad condition in Randomized block design (factorial) with nine treatments replicated thrice. The results revealed that on 23rd July maximum growing degree day (1874.4 ⁰C), hygrothermal unit-I (159679.6%), hygrothermal unit-II (100522.0%), photo temperature (2968.4 ⁰C), nycto temperature (2968.4 ⁰C). Whereas, maximum photo thermal unit (18885.2 ⁰C), heliothermal unit (12147.9⁰C) and interdiurnal temperature (846.8 ⁰C) was recorded at 06 August sowing date.

Keywords: Pearl millet, Varieties, Agrometeorological indices

REFERENCES

Anonymous. (2010). Annual Report All India Coordinated Pearl millet Improvement Project. 141-142. Black, C.A. (1965). Methods of Soil Analysis, Part 2 (ed.), *American Society of Agronomy*. Inc. Madison, Wisconsin, USA.

Gomez, K.A. and Gomez ,A.A. (1984). Statistical procedures for Agricultural Res. 2nd edn. John Wiley and Sons, New York. 680 pp.

Jackson, M.L. (1973). Soil Chemical Analysis, Prentice Hall of India Pvt Ltd., New Delhi.

Muthuvel, P. and Udayasoorian, C. (1999). Soil, plant, water and agrochemical analysis, Tamil Nadu Agricultural University, Coimbatore, India.

Olsen, S. R., Cole, C.V., Watanabe, F.S. and La, Dean. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Circular 939, Washington, District of Columbia, USA. 19.

Rajput, R.P. (1980). Response of soybean crop to climate and soil environment. Ph. D. Thesis. IARI, New Delhi.

Subbiah, B. V. and Asija, G.L. (1956). A rapid procedure for estimation of available nitrogen in soils. *Current Science*. 25: 259-260.

Toth, S. J. and Prince, A. L. (1949). Estimation of cation exchange capacity and exchangeable calcium, potassium, and sodium contents of soils by flame photometer techniques, Soil Science, Vol. 67: 439-445.

Upadhyay, PN., Dixit ,A.G., Patel, J.R. and Chavda, J.R. (2001). Response of summer pearl millet to time and method of planting, age of seedling and phosphorus grown on loamy sand soils of Gujarat. *Indian J. Agron.* 46(1):126-130.

Walkley, A. and Black, A. (1934). An examination of Degtjareff Method of Determining Soil Organic Matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.

Wang, J. Y. (1963). Agricultural Meteorology, University of Wisconsin, Medison, Pacemaker Press. pp: 101-135.

Wilcox, L.V. (1955) Classification and use of irrigation waters. US Department of Agriculture, Arc 969, Washington DC.

Yang, J., Zhang, J., Wang, Z., Zhu, Q. and Liu, L. (2001) . Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. *Agronomy Journal*.93: 196–206.