VALIDATION OF MAS DERIVED LINES FOR INTROGRESSIONED GENE AGAINST BLAST AND BLB RESISTANCE IN SOUTHERN CHHATTISGARH

Prafull Kumar*

S.G. College of Agriculture and research Station, Jagdalpur, IGKV, Raipur, Chhattisgarh
Email: prafull397@gmail.com

Received-07.04.2020, Revised-29.04.2020

Abstract: The experiment was carried out at SGCARS, Jagdalpur, IGKV Raipur, Chhattisgarh to validate Marker Assisted Selection (MAS) derived genotypes, from ICAR-IIRR, Hyderabad, against blast and bacterial leaf blight resistance and access recurrent parent recovery. BPT 5204 (Samba Malsuri) the recurrent parent 01 (RP 1) for the four test genotype recorded average plot yield of 4.00 kg/ha placing second in the experiment. When the recurrent parent 02 (Improved Sambha Malsuri) was taken into account, genotype RP-Patho-1-2-15 recorded higher plot yield (4.23 kg). RP-Patho-1-2-15 and RP-Patho-3-56-11 were similar to the recurrent parent with heading spanof 78 and 79 DAS accordingly while RP-Patho-3-73-6 was six days in advance (70 days) to the recurrent parent (76 days). The entire test Near Isogenic Lines (NILs) with a plant height of 79-85 cm were similar to the recurrent parent (82 cm). Blast and bacterial leaf blight resistance gene carrying genotypes RP-Patho-2-18-5 and RP-Patho-2-16-4 gave plot grain yield 3.77kg, which out yielded recurrent parent 02 but lesser than recurrent parent 01. Incidence of blast reported in Tetep (1-2%), C 101 LAC (8-10%) and average (5-8%) in all NILs. Blast resistance genes Pi 1 carrying genotypes RP-Patho-1-2-15 and RP-Patho-1-6-5, the infestation the comparatively higher (Score 6) than those with Pi 54 (RP-Patho-3-56-11 and RP-Patho-3-73-6, RP-Patho-3-56-11 and RP-Patho-3-73-6 (Score 4). However, dual genetic resistance background i.e. blast and bacterial blight resistance genes Xa21+ Pi 54, provided excellent resistance even in hot spot centre for the disease. There was no coincidence of Bacterial Leaf Blight (BLB) in all the isogenic line including donor and recurrent parents which may because of plant defence system or incompatible environmental condition for disease prevalence.

Keywords: NILs, Marker Assisted Selection, Recurrent parent, Blast, Bacterial Leaf Blight

INTRODUCTION

Rice (Oryza sativa L.) is one of the vital cultivated crop, which provides food for more than half of the world’s population and constitutes a major source of calories for urban and rural inhabitants (Singh et al., 2015.Kumar et al., 2015a), regrettably, whose production is constrained by substantial number of fungal, bacterial and viral origin diseases. Rice blast (caused by Magnaporthe grisea) and bacterial leaf blight (BLB, caused by Xanthomonas oryzae pv. Oryzae, Xoo) are two most destructive diseases leading to severe yield losses in rice production worldwide (Zhan et al., 2012). Bacterial leaf blight (BLB) is one of the most devastating diseases affecting entire rice acreages and causes severe yield losses of up to 74-81% depending upon crop stage, cultivar susceptibility index and the environmental phenomenon (Srinivasan et al., 2005). Rice blast, caused by the filamentous ascomycete fungus Magnaporthe oryzae (anamorph Pyricularia oryzae), is another major threats for rice production and leads to significant yield loss, as high as 70-80% during an epidemic (Khush et al., 2009).The most effective approach to prevent the two diseases is the genetic improvement using resistant varieties however, narrow genetic diversity in existing gene pool is problematic in breeding for adaption to these major biotic stresses (Sattari et al., 2014). Therefore, exploitation of host plant resistance is emerging as most effective, economical and environmentally safe measure for controlling paddy blast and bacterial leaf blight in combination with pathological management. So far, 73 blast resistance genes and 31 BLB resistance genes have been identified (Balliniet al., 2008, Ruan et al., 2008, Cheema et al., 2008, Sujatha et al., 2011) and some of them have been incorporated into modern rice varieties (Sundaram et al., 2008, 2009) through marker assisted selection (MAS). Among these, few genes like Pi-1, Pi-2, Pi-9, Pi-54 etc. (for blast resistance) and Xa5, Xa 13, Xa21, etc. (for bacterial leaf blight resistance) are being extensively used in ricebreeding programmes globally as are highly effective and having tightly linked molecular markers.

Marker Assisted Backcross Selection (MABS) has previously been used in rice breeding to incorporate Sub1 gene of mega-variety Swarna to a submergence tolerant variety and IR64SUB1 for developing a newsubmergence tolerant rice variety ASS996-SUB1(Neeraj et al. 2007, Septiningsih et al. 2009, Luetal. 2012). It was also used to incorporatebadh2 and Wx gene from Basmati into Manawthukha for cookingquality parameters (Yiet al., 2009), and Pup1 under Phosphorus deficientlowland/irrigated conditions into SituBagendit and Batur (Chin et al. 2011). Rice salttolerance on BT7 cultivar, FL478 was used as a donorparent of SaltoQTL (Lin et al. 2012) and three-resistance genes (Xa4 + xa5 + Xa21) to bacterial leafblight were transferred from an indica donor (IRBB57) to Korean rice Mangleumbyeo (Suh etal. 2013). More recently Fatimah et al., (2014)
successfully transferred *hd2* gene in rice for early heading date. With these background, some of the ICAR-IRR (Formerly DRR) Hyderabad developed MAS breeding lines, obtained under AICRIP programme, possessing high level of resistance against blast (confferred by *Pi1* or *Pi54*) and bacterial leaf blight (confferred by *Xa21*) was evaluated for trait verification and for substantial equivalence with the recurrent parents in southern Chhattisgarh province.

MATERIALS AND METHODS

The Study Material

The breeding materials were obtained from Indian Institute of Rice Research, (ICAR-IRR, formerly DRR), Hyderabad under AICRIP programme in Advanced Varietal Trial 01.- Near Isogenic Lines (AVT-1-NILs). The trial was constituted with 6 test entries, 2 recurrent parents and 2 donor parents. Entry RP-Patho-I-2-15 and RP-Patho-I-6-5 possess *Pi-1*, resistant to leaf blast. Entry RP-Patho-3-56-11 and RP-Patho-3-73-6 possess *Pi-54*, conferring resistance to leaf blast (DRR, 2014). Entry RP-Patho-2-18-5 and RP-Patho-2-16-4 were derived from backcross between Improved Samba Mahsuri (recurrent parent) and Tetep (donor parent) possessing combined resistance to leaf blast and bacterial leaf blight as they possess the resistance genes *Pi-54* and *Xa21* respectively (DRR, 2014, Table 01).

Experiment Conduction and Statistical Analysis

The tri-replicated field experiment was conducted at Rice Research Block of S. G. College of Agriculture and Research Station, Jagdalpur, Chhattisgarh, India in Kharif 2013-14 with 5.2.6 m (Net plot) plot size, Randomized Complete Block Design. Standard agronomic package was followed to raise the crop. Restriction selection indice was constructed based on previous research review and four quantitative parameters were selected for genetic evaluation. The observation was recorded on net plot basis (heading date and plot yield), unit plot basis (panicles/sq M) and arithmetic mean basis among random selections. Days to 50 percent flowering was recorded when half of plant flowered among the plot. Panicle count was made with one square meter square at maturity. The disease scoring was made visually giving the score 1-9. Statistical analysis was done with SPARK 2.

RESULTS AND DISCUSSION

Rice is oldest domesticated cereal crop imparting diet to three billions globally (Shrivastava et al., 2014) of which irrigated rice account for 55 percent of area and 75 percent of production (Kumar et al., 2015b). Era of input oriented agriculture and changing climate have led this important crop susceptible to many diseases mainly Blast and BLB and scenario became more critical when narrowed crop genetic base and expanding pathogen biotype failed the monogenic plant breeding approach. Recently, pyramiding of more than one major resistance gene has been proven to deliver durable resistance (Rajpurohit et al., 2010). Since, conventional breeding tools are inefficient for gene pyramiding, particularly in recessively inherited resistance, such as *xa5* and *xa3*, marker assisted selection (MAS) enables to address these limitations by the evaluation of the expression status of resistance gene(s).

Genotypic response referring to Recurrent and Donor parent

The test entries were evaluated at Jagdalpur centre, hot spot location for rice blast disease, under natural field conditions. The experimental yield ranged from 2.67 kg/plot (Improved sambhaMahsuri) to 4.23 plot (RP-Patho-I-2-15). The Recurrent parent 01 (BPT 5204) was the earliest to flower with 50% flowering in 91 DAS followed by donor parent 01 (92 DAS) while RP-Patho-1-2-15 and RP-Patho-3-73-6 recorded to be late flowering genotypes with 113 DAS days to 50 percent flowering. The experimental mean for blooming period was 101 DAS. RP-Patho-3-73-6, BPT 5204 and RP-Patho-1-2-15 were short in plant height (70, 76 and 78 cms respectively) while Tetep was recorded to be tallest (115 cms) (Table 02) whereas, the mean plant height was reported to be 84.5 cms. Panicles count wassignificantly higher for BPT 5204, RP-Patho-3-73-11 and RP-Patho-1-6-5 (348, 324 and 312 correspondingly) while RP-Patho-1-2-15 and Tetep exhibited comparative lower count. The grain yield was in perfect direction with panicles number. BPT 5204 (Samba Mahsuri) the recurrent parent 1 (RP 1) for the four test genotype recorded average plot yield of 4.00 kg/ha placing second in the experiment. None of the entries recorded on par with recurrent parent 01 statically however, all the genotypes no significant difference was observed with respect to grain yield. When the recurrent parent 02 (Improved Samba Mahsuri) was taken into account, genotype RP-Patho-1-2-15 recorded higher plot yield (4.23 kg) and was at par. Flowering duration wise, RP-Patho-1-2-15 and RP-Patho-3-56-11 were similar to the recurrent parent with flowering of 78 and 79 DAS accordingly while RP-Patho-3-73-6 was six days in advance (70 days) to the recurrent parent (76 days). All the test isogenic lines with a plant height of 79-85 cm were similar to therecurrent parent (82 cm). Blast and bacterial leaf blight resistance gene carrying genotypes RP-Patho-2-18-5 and RP-Patho-2-16-4 gave plot grain yield 3.777 kg, which out yielded recurrent parent 02 but lesser than recurrent parent 01. However flowering was delayed (96 DAS and 99 DAS) and plant height was increased in both the isogenic lines (83cms and 81 cms). The same trend was continued with panicle count. The donor lines Tetep (DP 1) and C 101 LAC (DP 2) showed optimal adaption to Southern Chhattisgarh rice growing ecology. Average plant height of Tetep was 91 cms and attained 50 percent
flowering by 98 DAS. Since vegetative span was lengthened, panicle count (300) and plot yield also increased accordingly (3.43). Taking into account another donor parent (Tetep), it exhibited faster growth rate and attained 115cms plant height by 92 DAS of preflowering period. Compare to DP 2 produced lesser panicle population (264) and plot grain yield (3.15kg).

Resistance breeding by deploying target genes has always been a topic of interest and intense research for breeders and molecular biologist (Sundram et al., 2008, Zhan et al., 2012). Pyramiding major genes to enhance resistance spectrum in commercial cultivars has been proven by many workers (Hittalmani et al., 2000, Chen et al., 2001, Zhan and Cheng, 2001, Narayanan et al., 2002, 2004, Joseph et al., 2004, Neerja et al., 2007, Chen et al., 2008, 2009, Fujita et al., 2010). Marker-assisted selection for genes and disease evaluation for genetic verification can be conducted in laboratory conditions during seedling stage at first followed by field evaluation to access the environmental play. The subsequent selection for complex quantitative traits such as combining ability, grain quality and yield grain can be carried out in the fields during heading and maturity stage. Combined laboratory and field evaluation at early and late stages make MAS breeding more efficient and assured than conventional breeding (Zhan et al., 2012). Once disease resistance genes are standardised by MAS, rice breeding can be focused on combining and restoring the agronomic traits (Lang et al., 2008, Pinta et al., 2013). The biphasic selection in breeding programmes promising to overcome the defects of conventional hybridization breeding in which restorer genes and resistance genes usually have low recombinant frequency (Cao et al., 2003) that requires immense effort to identify the individuals combining both the resistance and restoring ability in research programme.

Scoring for Blast and Bacterial Leaf Blight

Morphologically all the isogenic lines were parallel to the respective recurrent parent, blast prevalence was modest in both Recurrent Parents. Incidence of blast reported in Tetep (1-2%), C 101 LAC (8-10%), all isogenic lines (5-8%). Blast resistance genes P1 carrying genotypes RP-Patho-1-2-15 and RP-Patho-1-6-5, the infestation the comparatively higher (Score 6) however those with P1 54 (RP-Patho-3-56-11 and RP-Patho-3-73-6). Similarly RP-Patho-3-56-11 and RP-Patho-3-73-6, having the blast resistance gene, (P1 54) showed average disease incidence (Score 4). However, dual genetic resistance background i.e. both blast and bacterial blight resistance genes Xa 21f + Pi-54, provided excellent resistance even in hot spot centre for the disease. In previous studies multiple resistance gene pyramiding has been reported by Chen et al., 2009 and Zhan et al., 2012. In genotype RP-Patho-2-16-4 the disease was scaled to be 01, which was quite similar to recurrent parent 02 (Improved Sambha Mahsuri). Visual evaluation of donor parents revealed average disease incidence (score 4). There was no incidence of Bacterial Leaf Blightin all the isogenic line including donor and recurrent parents which may because of plant defence system or incompatible environmental condition for disease prevalence. Plant adopts several strategies to defend against pathogens, including the production of antibacterial chemicals, which are either preformed (i.e. already present in plant tissue in variable amounts) or induced following infection (e.g. de novo synthesized phytoalexins) (Sattar et al., 2014). Many of the phytoalexins or pre-formed chemicals belong to the phenolic group (Latif, 2007). Phenolic compounds are secondary metabolites synthesized in plants and play a role in plant defence against pathogens through antimicrobial properties, involvement in cell wall reinforcement, modulation and induction of plant responses (Aly, 2002). Generally, when a plant is infected, its phenolic content increases in response to defence reaction (Ma, 2002). In addition, biochemical resistance is another complex but equally vital mechanism in plant pathogen defence specifically accumulation of peroxidase, catalase and other pathogenesis related proteins.

Recovery of Recurrent Parent

Almost all the genotypes exhibited stable recovery of one or both recurrent parents indicating stabilization of population allelic recombination. Perusing radar chart of recurrent parent recovery (Fig 01) reproductive behaviour were similar to BPT 5205 and Improved Sambha Mahsuri for all genotypes except RP-Patho-1-2-15 and RP-Patho-2-16-4 but it may attribute to G x E interactions rather than genetic segregation. Similarly, for above ground plant canopy length all test genotypes were relatively more closure to both the recurrent parents which shows comparative expression of photosynthates source sink balance in Near Isogenic Lines (NILs).

However, donor parent i.e. Tetep, plant height was significantly higher might be due to regional quantitative adaptability. Looking for sink strength, BPT 5205 recorded significantly higher potential of dry matter accumulation than remaining population due to genetic establishment in given environment. Parallel observation was recorded for RP-Patho-3-56-11, RP-Patho-3-73-6 and RP-Patho-2-18-5 showing potent leaf blast and bacterial leaf blight resistance for Southern province of Chhattisgarh. Ultimately, when crop yield was taken into account, the normal distribution curve shifted towards the recurrent parent 01 and the entire test entries lied between 1750 kg/ha to 3075 kg/ha. Summarily, sustainable yield potential was realized despite of target disease incidence all genotypes may be considered as resistance genotypes.

The varietal improvement for resistance to major prevalent and destructive diseases is necessary for sustainable grain yield. Past attempts to achieve Bacterial Leaf Blight (BLB) resistance is not very
much encouraging, largely due to disease variability level in growing areas (Sruewongchai, 2010). Pyramiding disease resistant genes into a single genetic background might be expected to give more durable disease resistance, as more resistant genes are incorporated into single genotypes (Koide, 2010). Till date, as many as 24 major genes of host plant resistance which have been identified and used in rice improvement programme (Rao, 2002). The BLB resistance becomes quantitative when using NILs with four resistance genes (R gene) (Xa4, xa5, xa13, and Xa21) that express a higher level and more durable resistance. Further, the resistant genes to BLB, Xa4, and xa13, links to microsatellites markers RM144 and RM122, respectively, and xa5 links to STS marker (RG136) (Sattari et al., 2014).

CONCLUSION

Many disease resistant varieties have been developed but they have not been widely adopted as tolerant varieties lack many of desirable traits of the widely grown mega varieties and hence replacement of these megavarieties with modern cultivars cannot be possible. However, these megavarieties despite having many agronomically desirable characters, often susceptible to biotic and abiotic stress. With advances in molecular biology, breeding for resistance genes has become wise and efficient strategy in crop improvement. In present investigation evaluation was made of DRR bred materials for hot spot of paddy blast. All the genotypes were similar to recurrent parent with respect to flowering duration, canopy length, and plot grain yield and disease reaction indicating the recovery of crossed material to desired genetic background after introgression of dual resistance gene and equally and effectively even in hot spot centre for the disease. No incidence of bacterial leaf blight (BLB) was observed and the reason may be excellent resistant source or environmental cause.

Table 1. Composition of Entries (Near Isogenic Lines) for Recurrent Parent Recovery Analysis (RPRA)

<table>
<thead>
<tr>
<th>S No</th>
<th>Genotype</th>
<th>Cross Combination</th>
<th>Resistance Gene</th>
<th>Grain Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>RP-Patho-1-2-15</td>
<td>BPT 5204*2/C 101 LAC</td>
<td>Blast Resistance Gene Pi-1</td>
<td>MS</td>
</tr>
<tr>
<td>02.</td>
<td>RP-Patho-1-6-5</td>
<td>BPT 5204*2/C 101 LAC</td>
<td>Blast Resistance Gene Pi-1</td>
<td>MS</td>
</tr>
<tr>
<td>03.</td>
<td>RP-Patho-3-56-11</td>
<td>BPT 5204*2/Tetep</td>
<td>Blast Resistance Gene Pi-kh (Pi-54)</td>
<td>MS</td>
</tr>
<tr>
<td>04.</td>
<td>RP-Patho-3-73-6</td>
<td>BPT 5204*2/Tetep</td>
<td>Blast Resistance Gene Pi-kh (Pi-54)</td>
<td>MS</td>
</tr>
<tr>
<td>05.</td>
<td>RP-Patho-2-18-5</td>
<td>Improved Sambha Mahsuri/Tetep</td>
<td>Blast and Bacterial Blight Resistant Gene Xa2I+Pi-kh (Pi-54)</td>
<td>MS</td>
</tr>
<tr>
<td>06.</td>
<td>RP-Patho-1-2-15</td>
<td>Improved Sambha Mahsuri/Tetep</td>
<td>Blast and Bacterial Blight Resistant Gene Xa2I+Pi-kh (Pi-54)</td>
<td>MS</td>
</tr>
<tr>
<td>07.</td>
<td>BPT 5204</td>
<td>Recurrent Parent 01(RP 01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.</td>
<td>Improved Sambha Mahsuri</td>
<td>Recurrent Parent 02 (RP 02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.</td>
<td>Tetep</td>
<td>Donor parent 01 (DP 01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>C 101 LAC</td>
<td>Donor Parent 02 (DP 02)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Ancillary Traits Data following Restriction Selection Indices

<table>
<thead>
<tr>
<th></th>
<th>Plant Height (cm)</th>
<th>Days to 50 percent Flowering</th>
<th>Panicles/sqm</th>
<th>Grain Yield/Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SE</td>
<td>Mean SE (±)</td>
<td>Mean SE</td>
<td>Mean SE (±)</td>
</tr>
<tr>
<td>RP- Patho-1-2-15</td>
<td>78 4.98</td>
<td>113 0.88</td>
<td>257 12.42</td>
<td>4.23 0.15</td>
</tr>
<tr>
<td>RP- Patho-1-6-5</td>
<td>90 3.84</td>
<td>108 0.33</td>
<td>312 24.12</td>
<td>3.87 0.41</td>
</tr>
<tr>
<td>RP- Patho-3-56-11</td>
<td>79 4.33</td>
<td>113 0.83</td>
<td>324 12.2</td>
<td>3.7 0.3</td>
</tr>
<tr>
<td>RP- Patho-3-73-6</td>
<td>70 4.97</td>
<td>107 1.16</td>
<td>331 12.44</td>
<td>3.03 0.35</td>
</tr>
<tr>
<td>RP- Patho-2-18-5</td>
<td>83 4.33</td>
<td>99 0.88</td>
<td>286 7.26</td>
<td>3.87 0.26</td>
</tr>
<tr>
<td>RP- Patho-2-16-4</td>
<td>81 3.18</td>
<td>96 0.81</td>
<td>272 5.81</td>
<td>3.87 0.23</td>
</tr>
<tr>
<td>BPT 5204 (RP 1)</td>
<td>76 4.63</td>
<td>91 0.67</td>
<td>348 10.1</td>
<td>4.0 0.17</td>
</tr>
<tr>
<td>Improved Sambha Mahsuri (RP 2)</td>
<td>82 2.72</td>
<td>94 0.58</td>
<td>276 8.95</td>
<td>2.67 0.09</td>
</tr>
<tr>
<td>Tetep (DP 1)</td>
<td>115 4.53</td>
<td>92 0.57</td>
<td>264 6.96</td>
<td>3.17 0.34</td>
</tr>
</tbody>
</table>
C 101 LAC (DP 2) 91 3.53 98 0.33 300 10.44 3.43 0.2

Critical Difference 8.74 2.39 37.54 0.68
Standard Error (difference) 4.13 1.13 17.73 0.32
Standard Error (mean) 2.92 0.79 12.54 0.23
Coefficient of Variation (%) (Relative measure of dispersion) 5.97 1.37 7.31 11.01

Fig 1. Radar chart of Recurrent parent recovery pattern
*A- Days to 50 percent flowering, B-Plant height, C-Panicle per square meter, D-Grain Yield

ACKNOWLEDGEMENT

The authors acknowledge Indian Institute of Rice Research (ICAR-IIRR formerly DRR), Hyderabad for providing study material and financial support.

REFERENCES

